@inproceedings{kim-etal-2019-document,
title = "When and Why is Document-level Context Useful in Neural Machine Translation?",
author = "Kim, Yunsu and
Tran, Duc Thanh and
Ney, Hermann",
editor = "Popescu-Belis, Andrei and
Lo{\'a}iciga, Sharid and
Hardmeier, Christian and
Xiong, Deyi",
booktitle = "Proceedings of the Fourth Workshop on Discourse in Machine Translation (DiscoMT 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-6503/",
doi = "10.18653/v1/D19-6503",
pages = "24--34",
abstract = "Document-level context has received lots of attention for compensating neural machine translation (NMT) of isolated sentences. However, recent advances in document-level NMT focus on sophisticated integration of the context, explaining its improvement with only a few selected examples or targeted test sets. We extensively quantify the causes of improvements by a document-level model in general test sets, clarifying the limit of the usefulness of document-level context in NMT. We show that most of the improvements are not interpretable as utilizing the context. We also show that a minimal encoding is sufficient for the context modeling and very long context is not helpful for NMT."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2019-document">
<titleInfo>
<title>When and Why is Document-level Context Useful in Neural Machine Translation?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunsu</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Duc</namePart>
<namePart type="given">Thanh</namePart>
<namePart type="family">Tran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hermann</namePart>
<namePart type="family">Ney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Discourse in Machine Translation (DiscoMT 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrei</namePart>
<namePart type="family">Popescu-Belis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharid</namePart>
<namePart type="family">Loáiciga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyi</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Document-level context has received lots of attention for compensating neural machine translation (NMT) of isolated sentences. However, recent advances in document-level NMT focus on sophisticated integration of the context, explaining its improvement with only a few selected examples or targeted test sets. We extensively quantify the causes of improvements by a document-level model in general test sets, clarifying the limit of the usefulness of document-level context in NMT. We show that most of the improvements are not interpretable as utilizing the context. We also show that a minimal encoding is sufficient for the context modeling and very long context is not helpful for NMT.</abstract>
<identifier type="citekey">kim-etal-2019-document</identifier>
<identifier type="doi">10.18653/v1/D19-6503</identifier>
<location>
<url>https://aclanthology.org/D19-6503/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>24</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T When and Why is Document-level Context Useful in Neural Machine Translation?
%A Kim, Yunsu
%A Tran, Duc Thanh
%A Ney, Hermann
%Y Popescu-Belis, Andrei
%Y Loáiciga, Sharid
%Y Hardmeier, Christian
%Y Xiong, Deyi
%S Proceedings of the Fourth Workshop on Discourse in Machine Translation (DiscoMT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F kim-etal-2019-document
%X Document-level context has received lots of attention for compensating neural machine translation (NMT) of isolated sentences. However, recent advances in document-level NMT focus on sophisticated integration of the context, explaining its improvement with only a few selected examples or targeted test sets. We extensively quantify the causes of improvements by a document-level model in general test sets, clarifying the limit of the usefulness of document-level context in NMT. We show that most of the improvements are not interpretable as utilizing the context. We also show that a minimal encoding is sufficient for the context modeling and very long context is not helpful for NMT.
%R 10.18653/v1/D19-6503
%U https://aclanthology.org/D19-6503/
%U https://doi.org/10.18653/v1/D19-6503
%P 24-34
Markdown (Informal)
[When and Why is Document-level Context Useful in Neural Machine Translation?](https://aclanthology.org/D19-6503/) (Kim et al., DiscoMT 2019)
ACL