@inproceedings{martinez-alonso-plank-2017-multitask,
title = "When is multitask learning effective? Semantic sequence prediction under varying data conditions",
author = "Mart{\'i}nez Alonso, H{\'e}ctor and
Plank, Barbara",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1005/",
pages = "44--53",
abstract = "Multitask learning has been applied successfully to a range of tasks, mostly morphosyntactic. However, little is known on \textit{when} MTL works and whether there are data characteristics that help to determine the success of MTL. In this paper we evaluate a range of semantic sequence labeling tasks in a MTL setup. We examine different auxiliary task configurations, amongst which a novel setup, and correlate their impact to data-dependent conditions. Our results show that MTL is not always effective, because significant improvements are obtained only for 1 out of 5 tasks. When successful, auxiliary tasks with compact and more uniform label distributions are preferable."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="martinez-alonso-plank-2017-multitask">
<titleInfo>
<title>When is multitask learning effective? Semantic sequence prediction under varying data conditions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Héctor</namePart>
<namePart type="family">Martínez Alonso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multitask learning has been applied successfully to a range of tasks, mostly morphosyntactic. However, little is known on when MTL works and whether there are data characteristics that help to determine the success of MTL. In this paper we evaluate a range of semantic sequence labeling tasks in a MTL setup. We examine different auxiliary task configurations, amongst which a novel setup, and correlate their impact to data-dependent conditions. Our results show that MTL is not always effective, because significant improvements are obtained only for 1 out of 5 tasks. When successful, auxiliary tasks with compact and more uniform label distributions are preferable.</abstract>
<identifier type="citekey">martinez-alonso-plank-2017-multitask</identifier>
<location>
<url>https://aclanthology.org/E17-1005/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>44</start>
<end>53</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T When is multitask learning effective? Semantic sequence prediction under varying data conditions
%A Martínez Alonso, Héctor
%A Plank, Barbara
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F martinez-alonso-plank-2017-multitask
%X Multitask learning has been applied successfully to a range of tasks, mostly morphosyntactic. However, little is known on when MTL works and whether there are data characteristics that help to determine the success of MTL. In this paper we evaluate a range of semantic sequence labeling tasks in a MTL setup. We examine different auxiliary task configurations, amongst which a novel setup, and correlate their impact to data-dependent conditions. Our results show that MTL is not always effective, because significant improvements are obtained only for 1 out of 5 tasks. When successful, auxiliary tasks with compact and more uniform label distributions are preferable.
%U https://aclanthology.org/E17-1005/
%P 44-53
Markdown (Informal)
[When is multitask learning effective? Semantic sequence prediction under varying data conditions](https://aclanthology.org/E17-1005/) (Martínez Alonso & Plank, EACL 2017)
ACL