@inproceedings{lai-hockenmaier-2017-learning,
title = "Learning to Predict Denotational Probabilities For Modeling Entailment",
author = "Lai, Alice and
Hockenmaier, Julia",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1068/",
pages = "721--730",
abstract = "We propose a framework that captures the denotational probabilities of words and phrases by embedding them in a vector space, and present a method to induce such an embedding from a dataset of denotational probabilities. We show that our model successfully predicts denotational probabilities for unseen phrases, and that its predictions are useful for textual entailment datasets such as SICK and SNLI."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lai-hockenmaier-2017-learning">
<titleInfo>
<title>Learning to Predict Denotational Probabilities For Modeling Entailment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alice</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a framework that captures the denotational probabilities of words and phrases by embedding them in a vector space, and present a method to induce such an embedding from a dataset of denotational probabilities. We show that our model successfully predicts denotational probabilities for unseen phrases, and that its predictions are useful for textual entailment datasets such as SICK and SNLI.</abstract>
<identifier type="citekey">lai-hockenmaier-2017-learning</identifier>
<location>
<url>https://aclanthology.org/E17-1068/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>721</start>
<end>730</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Predict Denotational Probabilities For Modeling Entailment
%A Lai, Alice
%A Hockenmaier, Julia
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F lai-hockenmaier-2017-learning
%X We propose a framework that captures the denotational probabilities of words and phrases by embedding them in a vector space, and present a method to induce such an embedding from a dataset of denotational probabilities. We show that our model successfully predicts denotational probabilities for unseen phrases, and that its predictions are useful for textual entailment datasets such as SICK and SNLI.
%U https://aclanthology.org/E17-1068/
%P 721-730
Markdown (Informal)
[Learning to Predict Denotational Probabilities For Modeling Entailment](https://aclanthology.org/E17-1068/) (Lai & Hockenmaier, EACL 2017)
ACL