@inproceedings{yaghoobzadeh-etal-2017-noise,
title = "Noise Mitigation for Neural Entity Typing and Relation Extraction",
author = {Yaghoobzadeh, Yadollah and
Adel, Heike and
Sch{\"u}tze, Hinrich},
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1111/",
pages = "1183--1194",
abstract = "In this paper, we address two different types of noise in information extraction models: noise from distant supervision and noise from pipeline input features. Our target tasks are entity typing and relation extraction. For the first noise type, we introduce multi-instance multi-label learning algorithms using neural network models, and apply them to fine-grained entity typing for the first time. Our model outperforms the state-of-the-art supervised approach which uses global embeddings of entities. For the second noise type, we propose ways to improve the integration of noisy entity type predictions into relation extraction. Our experiments show that probabilistic predictions are more robust than discrete predictions and that joint training of the two tasks performs best."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yaghoobzadeh-etal-2017-noise">
<titleInfo>
<title>Noise Mitigation for Neural Entity Typing and Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yadollah</namePart>
<namePart type="family">Yaghoobzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heike</namePart>
<namePart type="family">Adel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we address two different types of noise in information extraction models: noise from distant supervision and noise from pipeline input features. Our target tasks are entity typing and relation extraction. For the first noise type, we introduce multi-instance multi-label learning algorithms using neural network models, and apply them to fine-grained entity typing for the first time. Our model outperforms the state-of-the-art supervised approach which uses global embeddings of entities. For the second noise type, we propose ways to improve the integration of noisy entity type predictions into relation extraction. Our experiments show that probabilistic predictions are more robust than discrete predictions and that joint training of the two tasks performs best.</abstract>
<identifier type="citekey">yaghoobzadeh-etal-2017-noise</identifier>
<location>
<url>https://aclanthology.org/E17-1111/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>1183</start>
<end>1194</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Noise Mitigation for Neural Entity Typing and Relation Extraction
%A Yaghoobzadeh, Yadollah
%A Adel, Heike
%A Schütze, Hinrich
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F yaghoobzadeh-etal-2017-noise
%X In this paper, we address two different types of noise in information extraction models: noise from distant supervision and noise from pipeline input features. Our target tasks are entity typing and relation extraction. For the first noise type, we introduce multi-instance multi-label learning algorithms using neural network models, and apply them to fine-grained entity typing for the first time. Our model outperforms the state-of-the-art supervised approach which uses global embeddings of entities. For the second noise type, we propose ways to improve the integration of noisy entity type predictions into relation extraction. Our experiments show that probabilistic predictions are more robust than discrete predictions and that joint training of the two tasks performs best.
%U https://aclanthology.org/E17-1111/
%P 1183-1194
Markdown (Informal)
[Noise Mitigation for Neural Entity Typing and Relation Extraction](https://aclanthology.org/E17-1111/) (Yaghoobzadeh et al., EACL 2017)
ACL
- Yadollah Yaghoobzadeh, Heike Adel, and Hinrich Schütze. 2017. Noise Mitigation for Neural Entity Typing and Relation Extraction. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1183–1194, Valencia, Spain. Association for Computational Linguistics.