@inproceedings{maharjan-etal-2017-multi,
title = "A Multi-task Approach to Predict Likability of Books",
author = "Maharjan, Suraj and
Arevalo, John and
Montes, Manuel and
Gonz{\'a}lez, Fabio A. and
Solorio, Thamar",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1114",
pages = "1217--1227",
abstract = "We investigate the value of feature engineering and neural network models for predicting successful writing. Similar to previous work, we treat this as a binary classification task and explore new strategies to automatically learn representations from book contents. We evaluate our feature set on two different corpora created from Project Gutenberg books. The first presents a novel approach for generating the gold standard labels for the task and the other is based on prior research. Using a combination of hand-crafted and recurrent neural network learned representations in a dual learning setting, we obtain the best performance of 73.50{\%} weighted F1-score.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maharjan-etal-2017-multi">
<titleInfo>
<title>A Multi-task Approach to Predict Likability of Books</title>
</titleInfo>
<name type="personal">
<namePart type="given">Suraj</namePart>
<namePart type="family">Maharjan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Arevalo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manuel</namePart>
<namePart type="family">Montes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="given">A</namePart>
<namePart type="family">González</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the value of feature engineering and neural network models for predicting successful writing. Similar to previous work, we treat this as a binary classification task and explore new strategies to automatically learn representations from book contents. We evaluate our feature set on two different corpora created from Project Gutenberg books. The first presents a novel approach for generating the gold standard labels for the task and the other is based on prior research. Using a combination of hand-crafted and recurrent neural network learned representations in a dual learning setting, we obtain the best performance of 73.50% weighted F1-score.</abstract>
<identifier type="citekey">maharjan-etal-2017-multi</identifier>
<location>
<url>https://aclanthology.org/E17-1114</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>1217</start>
<end>1227</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Multi-task Approach to Predict Likability of Books
%A Maharjan, Suraj
%A Arevalo, John
%A Montes, Manuel
%A González, Fabio A.
%A Solorio, Thamar
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F maharjan-etal-2017-multi
%X We investigate the value of feature engineering and neural network models for predicting successful writing. Similar to previous work, we treat this as a binary classification task and explore new strategies to automatically learn representations from book contents. We evaluate our feature set on two different corpora created from Project Gutenberg books. The first presents a novel approach for generating the gold standard labels for the task and the other is based on prior research. Using a combination of hand-crafted and recurrent neural network learned representations in a dual learning setting, we obtain the best performance of 73.50% weighted F1-score.
%U https://aclanthology.org/E17-1114
%P 1217-1227
Markdown (Informal)
[A Multi-task Approach to Predict Likability of Books](https://aclanthology.org/E17-1114) (Maharjan et al., EACL 2017)
ACL
- Suraj Maharjan, John Arevalo, Manuel Montes, Fabio A. González, and Thamar Solorio. 2017. A Multi-task Approach to Predict Likability of Books. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1217–1227, Valencia, Spain. Association for Computational Linguistics.