@inproceedings{rimell-etal-2017-learning,
title = "Learning to Negate Adjectives with Bilinear Models",
author = "Rimell, Laura and
Mabona, Amandla and
Bulat, Luana and
Kiela, Douwe",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2012/",
pages = "71--78",
abstract = "We learn a mapping that negates adjectives by predicting an adjective`s antonym in an arbitrary word embedding model. We show that both linear models and neural networks improve on this task when they have access to a vector representing the semantic domain of the input word, e.g. a centroid of temperature words when predicting the antonym of {\textquoteleft}cold'. We introduce a continuous class-conditional bilinear neural network which is able to negate adjectives with high precision."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rimell-etal-2017-learning">
<titleInfo>
<title>Learning to Negate Adjectives with Bilinear Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Rimell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amandla</namePart>
<namePart type="family">Mabona</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luana</namePart>
<namePart type="family">Bulat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Douwe</namePart>
<namePart type="family">Kiela</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We learn a mapping that negates adjectives by predicting an adjective‘s antonym in an arbitrary word embedding model. We show that both linear models and neural networks improve on this task when they have access to a vector representing the semantic domain of the input word, e.g. a centroid of temperature words when predicting the antonym of ‘cold’. We introduce a continuous class-conditional bilinear neural network which is able to negate adjectives with high precision.</abstract>
<identifier type="citekey">rimell-etal-2017-learning</identifier>
<location>
<url>https://aclanthology.org/E17-2012/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>71</start>
<end>78</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Negate Adjectives with Bilinear Models
%A Rimell, Laura
%A Mabona, Amandla
%A Bulat, Luana
%A Kiela, Douwe
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F rimell-etal-2017-learning
%X We learn a mapping that negates adjectives by predicting an adjective‘s antonym in an arbitrary word embedding model. We show that both linear models and neural networks improve on this task when they have access to a vector representing the semantic domain of the input word, e.g. a centroid of temperature words when predicting the antonym of ‘cold’. We introduce a continuous class-conditional bilinear neural network which is able to negate adjectives with high precision.
%U https://aclanthology.org/E17-2012/
%P 71-78
Markdown (Informal)
[Learning to Negate Adjectives with Bilinear Models](https://aclanthology.org/E17-2012/) (Rimell et al., EACL 2017)
ACL
- Laura Rimell, Amandla Mabona, Luana Bulat, and Douwe Kiela. 2017. Learning to Negate Adjectives with Bilinear Models. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 71–78, Valencia, Spain. Association for Computational Linguistics.