@inproceedings{pande-2017-effective,
title = "Effective search space reduction for spell correction using character neural embeddings",
author = "Pande, Harshit",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2027",
pages = "170--174",
abstract = "We present a novel, unsupervised, and distance measure agnostic method for search space reduction in spell correction using neural character embeddings. The embeddings are learned by skip-gram word2vec training on sequences generated from dictionary words in a phonetic information-retentive manner. We report a very high performance in terms of both success rates and reduction of search space on the Birkbeck spelling error corpus. To the best of our knowledge, this is the first application of word2vec to spell correction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pande-2017-effective">
<titleInfo>
<title>Effective search space reduction for spell correction using character neural embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Harshit</namePart>
<namePart type="family">Pande</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a novel, unsupervised, and distance measure agnostic method for search space reduction in spell correction using neural character embeddings. The embeddings are learned by skip-gram word2vec training on sequences generated from dictionary words in a phonetic information-retentive manner. We report a very high performance in terms of both success rates and reduction of search space on the Birkbeck spelling error corpus. To the best of our knowledge, this is the first application of word2vec to spell correction.</abstract>
<identifier type="citekey">pande-2017-effective</identifier>
<location>
<url>https://aclanthology.org/E17-2027</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>170</start>
<end>174</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Effective search space reduction for spell correction using character neural embeddings
%A Pande, Harshit
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F pande-2017-effective
%X We present a novel, unsupervised, and distance measure agnostic method for search space reduction in spell correction using neural character embeddings. The embeddings are learned by skip-gram word2vec training on sequences generated from dictionary words in a phonetic information-retentive manner. We report a very high performance in terms of both success rates and reduction of search space on the Birkbeck spelling error corpus. To the best of our knowledge, this is the first application of word2vec to spell correction.
%U https://aclanthology.org/E17-2027
%P 170-174
Markdown (Informal)
[Effective search space reduction for spell correction using character neural embeddings](https://aclanthology.org/E17-2027) (Pande, EACL 2017)
ACL