@inproceedings{dligach-etal-2017-neural,
title = "Neural Temporal Relation Extraction",
author = "Dligach, Dmitriy and
Miller, Timothy and
Lin, Chen and
Bethard, Steven and
Savova, Guergana",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2118",
pages = "746--751",
abstract = "We experiment with neural architectures for temporal relation extraction and establish a new state-of-the-art for several scenarios. We find that neural models with only tokens as input outperform state-of-the-art hand-engineered feature-based models, that convolutional neural networks outperform LSTM models, and that encoding relation arguments with XML tags outperforms a traditional position-based encoding.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dligach-etal-2017-neural">
<titleInfo>
<title>Neural Temporal Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dmitriy</namePart>
<namePart type="family">Dligach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guergana</namePart>
<namePart type="family">Savova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We experiment with neural architectures for temporal relation extraction and establish a new state-of-the-art for several scenarios. We find that neural models with only tokens as input outperform state-of-the-art hand-engineered feature-based models, that convolutional neural networks outperform LSTM models, and that encoding relation arguments with XML tags outperforms a traditional position-based encoding.</abstract>
<identifier type="citekey">dligach-etal-2017-neural</identifier>
<location>
<url>https://aclanthology.org/E17-2118</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>746</start>
<end>751</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Temporal Relation Extraction
%A Dligach, Dmitriy
%A Miller, Timothy
%A Lin, Chen
%A Bethard, Steven
%A Savova, Guergana
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F dligach-etal-2017-neural
%X We experiment with neural architectures for temporal relation extraction and establish a new state-of-the-art for several scenarios. We find that neural models with only tokens as input outperform state-of-the-art hand-engineered feature-based models, that convolutional neural networks outperform LSTM models, and that encoding relation arguments with XML tags outperforms a traditional position-based encoding.
%U https://aclanthology.org/E17-2118
%P 746-751
Markdown (Informal)
[Neural Temporal Relation Extraction](https://aclanthology.org/E17-2118) (Dligach et al., EACL 2017)
ACL
- Dmitriy Dligach, Timothy Miller, Chen Lin, Steven Bethard, and Guergana Savova. 2017. Neural Temporal Relation Extraction. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 746–751, Valencia, Spain. Association for Computational Linguistics.