@inproceedings{cotterell-etal-2017-neural,
title = "Neural Graphical Models over Strings for Principal Parts Morphological Paradigm Completion",
author = "Cotterell, Ryan and
Sylak-Glassman, John and
Kirov, Christo",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2120/",
pages = "759--765",
abstract = "Many of the world`s languages contain an abundance of inflected forms for each lexeme. A critical task in processing such languages is predicting these inflected forms. We develop a novel statistical model for the problem, drawing on graphical modeling techniques and recent advances in deep learning. We derive a Metropolis-Hastings algorithm to jointly decode the model. Our Bayesian network draws inspiration from principal parts morphological analysis. We demonstrate improvements on 5 languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cotterell-etal-2017-neural">
<titleInfo>
<title>Neural Graphical Models over Strings for Principal Parts Morphological Paradigm Completion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Sylak-Glassman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christo</namePart>
<namePart type="family">Kirov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Many of the world‘s languages contain an abundance of inflected forms for each lexeme. A critical task in processing such languages is predicting these inflected forms. We develop a novel statistical model for the problem, drawing on graphical modeling techniques and recent advances in deep learning. We derive a Metropolis-Hastings algorithm to jointly decode the model. Our Bayesian network draws inspiration from principal parts morphological analysis. We demonstrate improvements on 5 languages.</abstract>
<identifier type="citekey">cotterell-etal-2017-neural</identifier>
<location>
<url>https://aclanthology.org/E17-2120/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>759</start>
<end>765</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Graphical Models over Strings for Principal Parts Morphological Paradigm Completion
%A Cotterell, Ryan
%A Sylak-Glassman, John
%A Kirov, Christo
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F cotterell-etal-2017-neural
%X Many of the world‘s languages contain an abundance of inflected forms for each lexeme. A critical task in processing such languages is predicting these inflected forms. We develop a novel statistical model for the problem, drawing on graphical modeling techniques and recent advances in deep learning. We derive a Metropolis-Hastings algorithm to jointly decode the model. Our Bayesian network draws inspiration from principal parts morphological analysis. We demonstrate improvements on 5 languages.
%U https://aclanthology.org/E17-2120/
%P 759-765
Markdown (Informal)
[Neural Graphical Models over Strings for Principal Parts Morphological Paradigm Completion](https://aclanthology.org/E17-2120/) (Cotterell et al., EACL 2017)
ACL