@inproceedings{do-etal-2017-improving,
title = "Improving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments",
author = "Do, Quynh Ngoc Thi and
Bethard, Steven and
Moens, Marie-Francine",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1010/",
pages = "90--99",
abstract = "Implicit semantic role labeling (iSRL) is the task of predicting the semantic roles of a predicate that do not appear as explicit arguments, but rather regard common sense knowledge or are mentioned earlier in the discourse. We introduce an approach to iSRL based on a predictive recurrent neural semantic frame model (PRNSFM) that uses a large unannotated corpus to learn the probability of a sequence of semantic arguments given a predicate. We leverage the sequence probabilities predicted by the PRNSFM to estimate selectional preferences for predicates and their arguments. On the NomBank iSRL test set, our approach improves state-of-the-art performance on implicit semantic role labeling with less reliance than prior work on manually constructed language resources."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="do-etal-2017-improving">
<titleInfo>
<title>Improving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Quynh</namePart>
<namePart type="given">Ngoc</namePart>
<namePart type="given">Thi</namePart>
<namePart type="family">Do</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Implicit semantic role labeling (iSRL) is the task of predicting the semantic roles of a predicate that do not appear as explicit arguments, but rather regard common sense knowledge or are mentioned earlier in the discourse. We introduce an approach to iSRL based on a predictive recurrent neural semantic frame model (PRNSFM) that uses a large unannotated corpus to learn the probability of a sequence of semantic arguments given a predicate. We leverage the sequence probabilities predicted by the PRNSFM to estimate selectional preferences for predicates and their arguments. On the NomBank iSRL test set, our approach improves state-of-the-art performance on implicit semantic role labeling with less reliance than prior work on manually constructed language resources.</abstract>
<identifier type="citekey">do-etal-2017-improving</identifier>
<location>
<url>https://aclanthology.org/I17-1010/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>90</start>
<end>99</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments
%A Do, Quynh Ngoc Thi
%A Bethard, Steven
%A Moens, Marie-Francine
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F do-etal-2017-improving
%X Implicit semantic role labeling (iSRL) is the task of predicting the semantic roles of a predicate that do not appear as explicit arguments, but rather regard common sense knowledge or are mentioned earlier in the discourse. We introduce an approach to iSRL based on a predictive recurrent neural semantic frame model (PRNSFM) that uses a large unannotated corpus to learn the probability of a sequence of semantic arguments given a predicate. We leverage the sequence probabilities predicted by the PRNSFM to estimate selectional preferences for predicates and their arguments. On the NomBank iSRL test set, our approach improves state-of-the-art performance on implicit semantic role labeling with less reliance than prior work on manually constructed language resources.
%U https://aclanthology.org/I17-1010/
%P 90-99
Markdown (Informal)
[Improving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments](https://aclanthology.org/I17-1010/) (Do et al., IJCNLP 2017)
ACL