@inproceedings{do-etal-2017-improving,
    title = "Improving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments",
    author = "Do, Quynh Ngoc Thi  and
      Bethard, Steven  and
      Moens, Marie-Francine",
    editor = "Kondrak, Greg  and
      Watanabe, Taro",
    booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = nov,
    year = "2017",
    address = "Taipei, Taiwan",
    publisher = "Asian Federation of Natural Language Processing",
    url = "https://aclanthology.org/I17-1010/",
    pages = "90--99",
    abstract = "Implicit semantic role labeling (iSRL) is the task of predicting the semantic roles of a predicate that do not appear as explicit arguments, but rather regard common sense knowledge or are mentioned earlier in the discourse. We introduce an approach to iSRL based on a predictive recurrent neural semantic frame model (PRNSFM) that uses a large unannotated corpus to learn the probability of a sequence of semantic arguments given a predicate. We leverage the sequence probabilities predicted by the PRNSFM to estimate selectional preferences for predicates and their arguments. On the NomBank iSRL test set, our approach improves state-of-the-art performance on implicit semantic role labeling with less reliance than prior work on manually constructed language resources."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="do-etal-2017-improving">
    <titleInfo>
        <title>Improving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Quynh</namePart>
        <namePart type="given">Ngoc</namePart>
        <namePart type="given">Thi</namePart>
        <namePart type="family">Do</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Steven</namePart>
        <namePart type="family">Bethard</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Marie-Francine</namePart>
        <namePart type="family">Moens</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Greg</namePart>
            <namePart type="family">Kondrak</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Taro</namePart>
            <namePart type="family">Watanabe</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Asian Federation of Natural Language Processing</publisher>
            <place>
                <placeTerm type="text">Taipei, Taiwan</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Implicit semantic role labeling (iSRL) is the task of predicting the semantic roles of a predicate that do not appear as explicit arguments, but rather regard common sense knowledge or are mentioned earlier in the discourse. We introduce an approach to iSRL based on a predictive recurrent neural semantic frame model (PRNSFM) that uses a large unannotated corpus to learn the probability of a sequence of semantic arguments given a predicate. We leverage the sequence probabilities predicted by the PRNSFM to estimate selectional preferences for predicates and their arguments. On the NomBank iSRL test set, our approach improves state-of-the-art performance on implicit semantic role labeling with less reliance than prior work on manually constructed language resources.</abstract>
    <identifier type="citekey">do-etal-2017-improving</identifier>
    <location>
        <url>https://aclanthology.org/I17-1010/</url>
    </location>
    <part>
        <date>2017-11</date>
        <extent unit="page">
            <start>90</start>
            <end>99</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments
%A Do, Quynh Ngoc Thi
%A Bethard, Steven
%A Moens, Marie-Francine
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F do-etal-2017-improving
%X Implicit semantic role labeling (iSRL) is the task of predicting the semantic roles of a predicate that do not appear as explicit arguments, but rather regard common sense knowledge or are mentioned earlier in the discourse. We introduce an approach to iSRL based on a predictive recurrent neural semantic frame model (PRNSFM) that uses a large unannotated corpus to learn the probability of a sequence of semantic arguments given a predicate. We leverage the sequence probabilities predicted by the PRNSFM to estimate selectional preferences for predicates and their arguments. On the NomBank iSRL test set, our approach improves state-of-the-art performance on implicit semantic role labeling with less reliance than prior work on manually constructed language resources.
%U https://aclanthology.org/I17-1010/
%P 90-99
Markdown (Informal)
[Improving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments](https://aclanthology.org/I17-1010/) (Do et al., IJCNLP 2017)
ACL