@inproceedings{wang-etal-2017-distributional,
title = "Distributional Modeling on a Diet: One-shot Word Learning from Text Only",
author = "Wang, Su and
Roller, Stephen and
Erk, Katrin",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1021",
pages = "204--213",
abstract = "We test whether distributional models can do one-shot learning of definitional properties from text only. Using Bayesian models, we find that first learning overarching structure in the known data, regularities in textual contexts and in properties, helps one-shot learning, and that individual context items can be highly informative.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2017-distributional">
<titleInfo>
<title>Distributional Modeling on a Diet: One-shot Word Learning from Text Only</title>
</titleInfo>
<name type="personal">
<namePart type="given">Su</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="family">Roller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katrin</namePart>
<namePart type="family">Erk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We test whether distributional models can do one-shot learning of definitional properties from text only. Using Bayesian models, we find that first learning overarching structure in the known data, regularities in textual contexts and in properties, helps one-shot learning, and that individual context items can be highly informative.</abstract>
<identifier type="citekey">wang-etal-2017-distributional</identifier>
<location>
<url>https://aclanthology.org/I17-1021</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>204</start>
<end>213</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Distributional Modeling on a Diet: One-shot Word Learning from Text Only
%A Wang, Su
%A Roller, Stephen
%A Erk, Katrin
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F wang-etal-2017-distributional
%X We test whether distributional models can do one-shot learning of definitional properties from text only. Using Bayesian models, we find that first learning overarching structure in the known data, regularities in textual contexts and in properties, helps one-shot learning, and that individual context items can be highly informative.
%U https://aclanthology.org/I17-1021
%P 204-213
Markdown (Informal)
[Distributional Modeling on a Diet: One-shot Word Learning from Text Only](https://aclanthology.org/I17-1021) (Wang et al., IJCNLP 2017)
ACL