@inproceedings{liu-etal-2017-capturing,
title = "Capturing Long-range Contextual Dependencies with Memory-enhanced Conditional Random Fields",
author = "Liu, Fei and
Baldwin, Timothy and
Cohn, Trevor",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1056/",
pages = "555--565",
abstract = "Despite successful applications across a broad range of NLP tasks, conditional random fields ({\textquotedblleft}CRFs{\textquotedblright}), in particular the linear-chain variant, are only able to model local features. While this has important benefits in terms of inference tractability, it limits the ability of the model to capture long-range dependencies between items. Attempts to extend CRFs to capture long-range dependencies have largely come at the cost of computational complexity and approximate inference. In this work, we propose an extension to CRFs by integrating external memory, taking inspiration from memory networks, thereby allowing CRFs to incorporate information far beyond neighbouring steps. Experiments across two tasks show substantial improvements over strong CRF and LSTM baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2017-capturing">
<titleInfo>
<title>Capturing Long-range Contextual Dependencies with Memory-enhanced Conditional Random Fields</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Despite successful applications across a broad range of NLP tasks, conditional random fields (“CRFs”), in particular the linear-chain variant, are only able to model local features. While this has important benefits in terms of inference tractability, it limits the ability of the model to capture long-range dependencies between items. Attempts to extend CRFs to capture long-range dependencies have largely come at the cost of computational complexity and approximate inference. In this work, we propose an extension to CRFs by integrating external memory, taking inspiration from memory networks, thereby allowing CRFs to incorporate information far beyond neighbouring steps. Experiments across two tasks show substantial improvements over strong CRF and LSTM baselines.</abstract>
<identifier type="citekey">liu-etal-2017-capturing</identifier>
<location>
<url>https://aclanthology.org/I17-1056/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>555</start>
<end>565</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Capturing Long-range Contextual Dependencies with Memory-enhanced Conditional Random Fields
%A Liu, Fei
%A Baldwin, Timothy
%A Cohn, Trevor
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F liu-etal-2017-capturing
%X Despite successful applications across a broad range of NLP tasks, conditional random fields (“CRFs”), in particular the linear-chain variant, are only able to model local features. While this has important benefits in terms of inference tractability, it limits the ability of the model to capture long-range dependencies between items. Attempts to extend CRFs to capture long-range dependencies have largely come at the cost of computational complexity and approximate inference. In this work, we propose an extension to CRFs by integrating external memory, taking inspiration from memory networks, thereby allowing CRFs to incorporate information far beyond neighbouring steps. Experiments across two tasks show substantial improvements over strong CRF and LSTM baselines.
%U https://aclanthology.org/I17-1056/
%P 555-565
Markdown (Informal)
[Capturing Long-range Contextual Dependencies with Memory-enhanced Conditional Random Fields](https://aclanthology.org/I17-1056/) (Liu et al., IJCNLP 2017)
ACL