@inproceedings{ferracane-etal-2017-leveraging,
title = "Leveraging Discourse Information Effectively for Authorship Attribution",
author = "Ferracane, Elisa and
Wang, Su and
Mooney, Raymond",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1059/",
pages = "584--593",
abstract = "We explore techniques to maximize the effectiveness of discourse information in the task of authorship attribution. We present a novel method to embed discourse features in a Convolutional Neural Network text classifier, which achieves a state-of-the-art result by a significant margin. We empirically investigate several featurization methods to understand the conditions under which discourse features contribute non-trivial performance gains, and analyze discourse embeddings."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ferracane-etal-2017-leveraging">
<titleInfo>
<title>Leveraging Discourse Information Effectively for Authorship Attribution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Ferracane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Su</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raymond</namePart>
<namePart type="family">Mooney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explore techniques to maximize the effectiveness of discourse information in the task of authorship attribution. We present a novel method to embed discourse features in a Convolutional Neural Network text classifier, which achieves a state-of-the-art result by a significant margin. We empirically investigate several featurization methods to understand the conditions under which discourse features contribute non-trivial performance gains, and analyze discourse embeddings.</abstract>
<identifier type="citekey">ferracane-etal-2017-leveraging</identifier>
<location>
<url>https://aclanthology.org/I17-1059/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>584</start>
<end>593</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Discourse Information Effectively for Authorship Attribution
%A Ferracane, Elisa
%A Wang, Su
%A Mooney, Raymond
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F ferracane-etal-2017-leveraging
%X We explore techniques to maximize the effectiveness of discourse information in the task of authorship attribution. We present a novel method to embed discourse features in a Convolutional Neural Network text classifier, which achieves a state-of-the-art result by a significant margin. We empirically investigate several featurization methods to understand the conditions under which discourse features contribute non-trivial performance gains, and analyze discourse embeddings.
%U https://aclanthology.org/I17-1059/
%P 584-593
Markdown (Informal)
[Leveraging Discourse Information Effectively for Authorship Attribution](https://aclanthology.org/I17-1059/) (Ferracane et al., IJCNLP 2017)
ACL