@inproceedings{nguyen-nguyen-2017-ensemble,
title = "An Ensemble Method with Sentiment Features and Clustering Support",
author = "Nguyen, Huy Tien and
Nguyen, Minh Le",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1065/",
pages = "644--653",
abstract = "Deep learning models have recently been applied successfully in natural language processing, especially sentiment analysis. Each deep learning model has a particular advantage, but it is difficult to combine these advantages into one model, especially in the area of sentiment analysis. In our approach, Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) were utilized to learn sentiment-specific features in a freezing scheme. This scenario provides a novel and efficient way for integrating advantages of deep learning models. In addition, we also grouped documents into clusters by their similarity and applied the prediction score of Naive Bayes SVM (NBSVM) method to boost the classification accuracy of each group. The experiments show that our method achieves the state-of-the-art performance on two well-known datasets: IMDB large movie reviews for document level and Pang {\&} Lee movie reviews for sentence level."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-nguyen-2017-ensemble">
<titleInfo>
<title>An Ensemble Method with Sentiment Features and Clustering Support</title>
</titleInfo>
<name type="personal">
<namePart type="given">Huy</namePart>
<namePart type="given">Tien</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minh</namePart>
<namePart type="given">Le</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Deep learning models have recently been applied successfully in natural language processing, especially sentiment analysis. Each deep learning model has a particular advantage, but it is difficult to combine these advantages into one model, especially in the area of sentiment analysis. In our approach, Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) were utilized to learn sentiment-specific features in a freezing scheme. This scenario provides a novel and efficient way for integrating advantages of deep learning models. In addition, we also grouped documents into clusters by their similarity and applied the prediction score of Naive Bayes SVM (NBSVM) method to boost the classification accuracy of each group. The experiments show that our method achieves the state-of-the-art performance on two well-known datasets: IMDB large movie reviews for document level and Pang & Lee movie reviews for sentence level.</abstract>
<identifier type="citekey">nguyen-nguyen-2017-ensemble</identifier>
<location>
<url>https://aclanthology.org/I17-1065/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>644</start>
<end>653</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Ensemble Method with Sentiment Features and Clustering Support
%A Nguyen, Huy Tien
%A Nguyen, Minh Le
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F nguyen-nguyen-2017-ensemble
%X Deep learning models have recently been applied successfully in natural language processing, especially sentiment analysis. Each deep learning model has a particular advantage, but it is difficult to combine these advantages into one model, especially in the area of sentiment analysis. In our approach, Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) were utilized to learn sentiment-specific features in a freezing scheme. This scenario provides a novel and efficient way for integrating advantages of deep learning models. In addition, we also grouped documents into clusters by their similarity and applied the prediction score of Naive Bayes SVM (NBSVM) method to boost the classification accuracy of each group. The experiments show that our method achieves the state-of-the-art performance on two well-known datasets: IMDB large movie reviews for document level and Pang & Lee movie reviews for sentence level.
%U https://aclanthology.org/I17-1065/
%P 644-653
Markdown (Informal)
[An Ensemble Method with Sentiment Features and Clustering Support](https://aclanthology.org/I17-1065/) (Nguyen & Nguyen, IJCNLP 2017)
ACL