@inproceedings{shen-etal-2017-empirical,
title = "An Empirical Analysis of Multiple-Turn Reasoning Strategies in Reading Comprehension Tasks",
author = "Shen, Yelong and
Liu, Xiaodong and
Duh, Kevin and
Gao, Jianfeng",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1096/",
pages = "957--966",
abstract = "Reading comprehension (RC) is a challenging task that requires synthesis of information across sentences and multiple turns of reasoning. Using a state-of-the-art RC model, we empirically investigate the performance of single-turn and multiple-turn reasoning on the SQuAD and MS MARCO datasets. The RC model is an end-to-end neural network with iterative attention, and uses reinforcement learning to dynamically control the number of turns. We find that multiple-turn reasoning outperforms single-turn reasoning for all question and answer types; further, we observe that enabling a flexible number of turns generally improves upon a fixed multiple-turn strategy. {\%}across all question types, and is particularly beneficial to questions with lengthy, descriptive answers. We achieve results competitive to the state-of-the-art on these two datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shen-etal-2017-empirical">
<titleInfo>
<title>An Empirical Analysis of Multiple-Turn Reasoning Strategies in Reading Comprehension Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yelong</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianfeng</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Reading comprehension (RC) is a challenging task that requires synthesis of information across sentences and multiple turns of reasoning. Using a state-of-the-art RC model, we empirically investigate the performance of single-turn and multiple-turn reasoning on the SQuAD and MS MARCO datasets. The RC model is an end-to-end neural network with iterative attention, and uses reinforcement learning to dynamically control the number of turns. We find that multiple-turn reasoning outperforms single-turn reasoning for all question and answer types; further, we observe that enabling a flexible number of turns generally improves upon a fixed multiple-turn strategy. %across all question types, and is particularly beneficial to questions with lengthy, descriptive answers. We achieve results competitive to the state-of-the-art on these two datasets.</abstract>
<identifier type="citekey">shen-etal-2017-empirical</identifier>
<location>
<url>https://aclanthology.org/I17-1096/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>957</start>
<end>966</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Empirical Analysis of Multiple-Turn Reasoning Strategies in Reading Comprehension Tasks
%A Shen, Yelong
%A Liu, Xiaodong
%A Duh, Kevin
%A Gao, Jianfeng
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F shen-etal-2017-empirical
%X Reading comprehension (RC) is a challenging task that requires synthesis of information across sentences and multiple turns of reasoning. Using a state-of-the-art RC model, we empirically investigate the performance of single-turn and multiple-turn reasoning on the SQuAD and MS MARCO datasets. The RC model is an end-to-end neural network with iterative attention, and uses reinforcement learning to dynamically control the number of turns. We find that multiple-turn reasoning outperforms single-turn reasoning for all question and answer types; further, we observe that enabling a flexible number of turns generally improves upon a fixed multiple-turn strategy. %across all question types, and is particularly beneficial to questions with lengthy, descriptive answers. We achieve results competitive to the state-of-the-art on these two datasets.
%U https://aclanthology.org/I17-1096/
%P 957-966
Markdown (Informal)
[An Empirical Analysis of Multiple-Turn Reasoning Strategies in Reading Comprehension Tasks](https://aclanthology.org/I17-1096/) (Shen et al., IJCNLP 2017)
ACL