@inproceedings{white-etal-2017-inference,
title = "Inference is Everything: Recasting Semantic Resources into a Unified Evaluation Framework",
author = "White, Aaron Steven and
Rastogi, Pushpendre and
Duh, Kevin and
Van Durme, Benjamin",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1100",
pages = "996--1005",
abstract = "We propose to unify a variety of existing semantic classification tasks, such as semantic role labeling, anaphora resolution, and paraphrase detection, under the heading of Recognizing Textual Entailment (RTE). We present a general strategy to automatically generate one or more sentential hypotheses based on an input sentence and pre-existing manual semantic annotations. The resulting suite of datasets enables us to probe a statistical RTE model{'}s performance on different aspects of semantics. We demonstrate the value of this approach by investigating the behavior of a popular neural network RTE model.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="white-etal-2017-inference">
<titleInfo>
<title>Inference is Everything: Recasting Semantic Resources into a Unified Evaluation Framework</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="given">Steven</namePart>
<namePart type="family">White</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpendre</namePart>
<namePart type="family">Rastogi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose to unify a variety of existing semantic classification tasks, such as semantic role labeling, anaphora resolution, and paraphrase detection, under the heading of Recognizing Textual Entailment (RTE). We present a general strategy to automatically generate one or more sentential hypotheses based on an input sentence and pre-existing manual semantic annotations. The resulting suite of datasets enables us to probe a statistical RTE model’s performance on different aspects of semantics. We demonstrate the value of this approach by investigating the behavior of a popular neural network RTE model.</abstract>
<identifier type="citekey">white-etal-2017-inference</identifier>
<location>
<url>https://aclanthology.org/I17-1100</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>996</start>
<end>1005</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Inference is Everything: Recasting Semantic Resources into a Unified Evaluation Framework
%A White, Aaron Steven
%A Rastogi, Pushpendre
%A Duh, Kevin
%A Van Durme, Benjamin
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F white-etal-2017-inference
%X We propose to unify a variety of existing semantic classification tasks, such as semantic role labeling, anaphora resolution, and paraphrase detection, under the heading of Recognizing Textual Entailment (RTE). We present a general strategy to automatically generate one or more sentential hypotheses based on an input sentence and pre-existing manual semantic annotations. The resulting suite of datasets enables us to probe a statistical RTE model’s performance on different aspects of semantics. We demonstrate the value of this approach by investigating the behavior of a popular neural network RTE model.
%U https://aclanthology.org/I17-1100
%P 996-1005
Markdown (Informal)
[Inference is Everything: Recasting Semantic Resources into a Unified Evaluation Framework](https://aclanthology.org/I17-1100) (White et al., IJCNLP 2017)
ACL