@inproceedings{kamigaito-etal-2017-supervised,
title = "Supervised Attention for Sequence-to-Sequence Constituency Parsing",
author = "Kamigaito, Hidetaka and
Hayashi, Katsuhiko and
Hirao, Tsutomu and
Takamura, Hiroya and
Okumura, Manabu and
Nagata, Masaaki",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-2002/",
pages = "7--12",
abstract = "The sequence-to-sequence (Seq2Seq) model has been successfully applied to machine translation (MT). Recently, MT performances were improved by incorporating supervised attention into the model. In this paper, we introduce supervised attention to constituency parsing that can be regarded as another translation task. Evaluation results on the PTB corpus showed that the bracketing F-measure was improved by supervised attention."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kamigaito-etal-2017-supervised">
<titleInfo>
<title>Supervised Attention for Sequence-to-Sequence Constituency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hidetaka</namePart>
<namePart type="family">Kamigaito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katsuhiko</namePart>
<namePart type="family">Hayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsutomu</namePart>
<namePart type="family">Hirao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manabu</namePart>
<namePart type="family">Okumura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masaaki</namePart>
<namePart type="family">Nagata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The sequence-to-sequence (Seq2Seq) model has been successfully applied to machine translation (MT). Recently, MT performances were improved by incorporating supervised attention into the model. In this paper, we introduce supervised attention to constituency parsing that can be regarded as another translation task. Evaluation results on the PTB corpus showed that the bracketing F-measure was improved by supervised attention.</abstract>
<identifier type="citekey">kamigaito-etal-2017-supervised</identifier>
<location>
<url>https://aclanthology.org/I17-2002/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>7</start>
<end>12</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Supervised Attention for Sequence-to-Sequence Constituency Parsing
%A Kamigaito, Hidetaka
%A Hayashi, Katsuhiko
%A Hirao, Tsutomu
%A Takamura, Hiroya
%A Okumura, Manabu
%A Nagata, Masaaki
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F kamigaito-etal-2017-supervised
%X The sequence-to-sequence (Seq2Seq) model has been successfully applied to machine translation (MT). Recently, MT performances were improved by incorporating supervised attention into the model. In this paper, we introduce supervised attention to constituency parsing that can be regarded as another translation task. Evaluation results on the PTB corpus showed that the bracketing F-measure was improved by supervised attention.
%U https://aclanthology.org/I17-2002/
%P 7-12
Markdown (Informal)
[Supervised Attention for Sequence-to-Sequence Constituency Parsing](https://aclanthology.org/I17-2002/) (Kamigaito et al., IJCNLP 2017)
ACL
- Hidetaka Kamigaito, Katsuhiko Hayashi, Tsutomu Hirao, Hiroya Takamura, Manabu Okumura, and Masaaki Nagata. 2017. Supervised Attention for Sequence-to-Sequence Constituency Parsing. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 7–12, Taipei, Taiwan. Asian Federation of Natural Language Processing.