@inproceedings{yawata-etal-2017-analyzing,
title = "Analyzing Well-Formedness of Syllables in {J}apanese {S}ign {L}anguage",
author = "Yawata, Satoshi and
Miwa, Makoto and
Sasaki, Yutaka and
Hara, Daisuke",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-2005/",
pages = "26--30",
abstract = "This paper tackles a problem of analyzing the well-formedness of syllables in Japanese Sign Language (JSL). We formulate the problem as a classification problem that classifies syllables into well-formed or ill-formed. We build a data set that contains hand-coded syllables and their well-formedness. We define a fine-grained feature set based on the hand-coded syllables and train a logistic regression classifier on labeled syllables, expecting to find the discriminative features from the trained classifier. We also perform pseudo active learning to investigate the applicability of active learning in analyzing syllables. In the experiments, the best classifier with our combinatorial features achieved the accuracy of 87.0{\%}. The pseudo active learning is also shown to be effective showing that it could reduce about 84{\%} of training instances to achieve the accuracy of 82.0{\%} when compared to the model without active learning."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yawata-etal-2017-analyzing">
<titleInfo>
<title>Analyzing Well-Formedness of Syllables in Japanese Sign Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Yawata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yutaka</namePart>
<namePart type="family">Sasaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daisuke</namePart>
<namePart type="family">Hara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper tackles a problem of analyzing the well-formedness of syllables in Japanese Sign Language (JSL). We formulate the problem as a classification problem that classifies syllables into well-formed or ill-formed. We build a data set that contains hand-coded syllables and their well-formedness. We define a fine-grained feature set based on the hand-coded syllables and train a logistic regression classifier on labeled syllables, expecting to find the discriminative features from the trained classifier. We also perform pseudo active learning to investigate the applicability of active learning in analyzing syllables. In the experiments, the best classifier with our combinatorial features achieved the accuracy of 87.0%. The pseudo active learning is also shown to be effective showing that it could reduce about 84% of training instances to achieve the accuracy of 82.0% when compared to the model without active learning.</abstract>
<identifier type="citekey">yawata-etal-2017-analyzing</identifier>
<location>
<url>https://aclanthology.org/I17-2005/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>26</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analyzing Well-Formedness of Syllables in Japanese Sign Language
%A Yawata, Satoshi
%A Miwa, Makoto
%A Sasaki, Yutaka
%A Hara, Daisuke
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F yawata-etal-2017-analyzing
%X This paper tackles a problem of analyzing the well-formedness of syllables in Japanese Sign Language (JSL). We formulate the problem as a classification problem that classifies syllables into well-formed or ill-formed. We build a data set that contains hand-coded syllables and their well-formedness. We define a fine-grained feature set based on the hand-coded syllables and train a logistic regression classifier on labeled syllables, expecting to find the discriminative features from the trained classifier. We also perform pseudo active learning to investigate the applicability of active learning in analyzing syllables. In the experiments, the best classifier with our combinatorial features achieved the accuracy of 87.0%. The pseudo active learning is also shown to be effective showing that it could reduce about 84% of training instances to achieve the accuracy of 82.0% when compared to the model without active learning.
%U https://aclanthology.org/I17-2005/
%P 26-30
Markdown (Informal)
[Analyzing Well-Formedness of Syllables in Japanese Sign Language](https://aclanthology.org/I17-2005/) (Yawata et al., IJCNLP 2017)
ACL
- Satoshi Yawata, Makoto Miwa, Yutaka Sasaki, and Daisuke Hara. 2017. Analyzing Well-Formedness of Syllables in Japanese Sign Language. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 26–30, Taipei, Taiwan. Asian Federation of Natural Language Processing.