@inproceedings{beck-cohn-2017-learning,
title = "Learning Kernels over Strings using {G}aussian Processes",
author = "Beck, Daniel and
Cohn, Trevor",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-2012/",
pages = "67--73",
abstract = "Non-contiguous word sequences are widely known to be important in modelling natural language. However they not explicitly encoded in common text representations. In this work we propose a model for text processing using string kernels, capable of flexibly representing non-contiguous sequences. Specifically, we derive a vectorised version of the string kernel algorithm and their gradients, allowing efficient hyperparameter optimisation as part of a Gaussian Process framework. Experiments on synthetic data and text regression for emotion analysis show the promise of this technique."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="beck-cohn-2017-learning">
<titleInfo>
<title>Learning Kernels over Strings using Gaussian Processes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Beck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Non-contiguous word sequences are widely known to be important in modelling natural language. However they not explicitly encoded in common text representations. In this work we propose a model for text processing using string kernels, capable of flexibly representing non-contiguous sequences. Specifically, we derive a vectorised version of the string kernel algorithm and their gradients, allowing efficient hyperparameter optimisation as part of a Gaussian Process framework. Experiments on synthetic data and text regression for emotion analysis show the promise of this technique.</abstract>
<identifier type="citekey">beck-cohn-2017-learning</identifier>
<location>
<url>https://aclanthology.org/I17-2012/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>67</start>
<end>73</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Kernels over Strings using Gaussian Processes
%A Beck, Daniel
%A Cohn, Trevor
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F beck-cohn-2017-learning
%X Non-contiguous word sequences are widely known to be important in modelling natural language. However they not explicitly encoded in common text representations. In this work we propose a model for text processing using string kernels, capable of flexibly representing non-contiguous sequences. Specifically, we derive a vectorised version of the string kernel algorithm and their gradients, allowing efficient hyperparameter optimisation as part of a Gaussian Process framework. Experiments on synthetic data and text regression for emotion analysis show the promise of this technique.
%U https://aclanthology.org/I17-2012/
%P 67-73
Markdown (Informal)
[Learning Kernels over Strings using Gaussian Processes](https://aclanthology.org/I17-2012/) (Beck & Cohn, IJCNLP 2017)
ACL
- Daniel Beck and Trevor Cohn. 2017. Learning Kernels over Strings using Gaussian Processes. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 67–73, Taipei, Taiwan. Asian Federation of Natural Language Processing.