@inproceedings{lee-lee-2017-automatic,
title = "Automatic Text Summarization Using Reinforcement Learning with Embedding Features",
author = "Lee, Gyoung Ho and
Lee, Kong Joo",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-2033/",
pages = "193--197",
abstract = "An automatic text summarization system can automatically generate a short and brief summary that contains a main concept of an original document. In this work, we explore the advantages of simple embedding features in Reinforcement leaning approach to automatic text summarization tasks. In addition, we propose a novel deep learning network for estimating Q-values used in Reinforcement learning. We evaluate our model by using ROUGE scores with DUC 2001, 2002, Wikipedia, ACL-ARC data. Evaluation results show that our model is competitive with the previous models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-lee-2017-automatic">
<titleInfo>
<title>Automatic Text Summarization Using Reinforcement Learning with Embedding Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gyoung</namePart>
<namePart type="given">Ho</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kong</namePart>
<namePart type="given">Joo</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>An automatic text summarization system can automatically generate a short and brief summary that contains a main concept of an original document. In this work, we explore the advantages of simple embedding features in Reinforcement leaning approach to automatic text summarization tasks. In addition, we propose a novel deep learning network for estimating Q-values used in Reinforcement learning. We evaluate our model by using ROUGE scores with DUC 2001, 2002, Wikipedia, ACL-ARC data. Evaluation results show that our model is competitive with the previous models.</abstract>
<identifier type="citekey">lee-lee-2017-automatic</identifier>
<location>
<url>https://aclanthology.org/I17-2033/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>193</start>
<end>197</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Text Summarization Using Reinforcement Learning with Embedding Features
%A Lee, Gyoung Ho
%A Lee, Kong Joo
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F lee-lee-2017-automatic
%X An automatic text summarization system can automatically generate a short and brief summary that contains a main concept of an original document. In this work, we explore the advantages of simple embedding features in Reinforcement leaning approach to automatic text summarization tasks. In addition, we propose a novel deep learning network for estimating Q-values used in Reinforcement learning. We evaluate our model by using ROUGE scores with DUC 2001, 2002, Wikipedia, ACL-ARC data. Evaluation results show that our model is competitive with the previous models.
%U https://aclanthology.org/I17-2033/
%P 193-197
Markdown (Informal)
[Automatic Text Summarization Using Reinforcement Learning with Embedding Features](https://aclanthology.org/I17-2033/) (Lee & Lee, IJCNLP 2017)
ACL