@inproceedings{akama-etal-2017-generating,
title = "Generating Stylistically Consistent Dialog Responses with Transfer Learning",
author = "Akama, Reina and
Inada, Kazuaki and
Inoue, Naoya and
Kobayashi, Sosuke and
Inui, Kentaro",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-2069/",
pages = "408--412",
abstract = "We propose a novel, data-driven, and stylistically consistent dialog response generation system. To create a user-friendly system, it is crucial to make generated responses not only appropriate but also stylistically consistent. For leaning both the properties effectively, our proposed framework has two training stages inspired by transfer learning. First, we train the model to generate appropriate responses, and then we ensure that the responses have a specific style. Experimental results demonstrate that the proposed method produces stylistically consistent responses while maintaining the appropriateness of the responses learned in a general domain."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akama-etal-2017-generating">
<titleInfo>
<title>Generating Stylistically Consistent Dialog Responses with Transfer Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Reina</namePart>
<namePart type="family">Akama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazuaki</namePart>
<namePart type="family">Inada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoya</namePart>
<namePart type="family">Inoue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sosuke</namePart>
<namePart type="family">Kobayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel, data-driven, and stylistically consistent dialog response generation system. To create a user-friendly system, it is crucial to make generated responses not only appropriate but also stylistically consistent. For leaning both the properties effectively, our proposed framework has two training stages inspired by transfer learning. First, we train the model to generate appropriate responses, and then we ensure that the responses have a specific style. Experimental results demonstrate that the proposed method produces stylistically consistent responses while maintaining the appropriateness of the responses learned in a general domain.</abstract>
<identifier type="citekey">akama-etal-2017-generating</identifier>
<location>
<url>https://aclanthology.org/I17-2069/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>408</start>
<end>412</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Stylistically Consistent Dialog Responses with Transfer Learning
%A Akama, Reina
%A Inada, Kazuaki
%A Inoue, Naoya
%A Kobayashi, Sosuke
%A Inui, Kentaro
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F akama-etal-2017-generating
%X We propose a novel, data-driven, and stylistically consistent dialog response generation system. To create a user-friendly system, it is crucial to make generated responses not only appropriate but also stylistically consistent. For leaning both the properties effectively, our proposed framework has two training stages inspired by transfer learning. First, we train the model to generate appropriate responses, and then we ensure that the responses have a specific style. Experimental results demonstrate that the proposed method produces stylistically consistent responses while maintaining the appropriateness of the responses learned in a general domain.
%U https://aclanthology.org/I17-2069/
%P 408-412
Markdown (Informal)
[Generating Stylistically Consistent Dialog Responses with Transfer Learning](https://aclanthology.org/I17-2069/) (Akama et al., IJCNLP 2017)
ACL