@inproceedings{zhong-wang-2017-ldccnlp,
title = "{LDCCNLP} at {IJCNLP}-2017 Task 2: Dimensional Sentiment Analysis for {C}hinese Phrases Using Machine Learning",
author = "Zhong, Peng and
Wang, Jingbin",
editor = "Liu, Chao-Hong and
Nakov, Preslav and
Xue, Nianwen",
booktitle = "Proceedings of the {IJCNLP} 2017, Shared Tasks",
month = dec,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-4013",
pages = "84--88",
abstract = "Sentiment analysis on Chinese text has intensively studied. The basic task for related research is to construct an affective lexicon and thereby predict emotional scores of different levels. However, finite lexicon resources make it difficult to effectively and automatically distinguish between various types of sentiment information in Chinese texts. This IJCNLP2017-Task2 competition seeks to automatically calculate Valence and Arousal ratings within the hierarchies of vocabulary and phrases in Chinese. We introduce a regression methodology to automatically recognize continuous emotional values, and incorporate a word embedding technique. In our system, the MAE predictive values of Valence and Arousal were 0.811 and 0.996, respectively, for the sentiment dimension prediction of words in Chinese. In phrase prediction, the corresponding results were 0.822 and 0.489, ranking sixth among all teams.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhong-wang-2017-ldccnlp">
<titleInfo>
<title>LDCCNLP at IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases Using Machine Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peng</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingbin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the IJCNLP 2017, Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chao-Hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment analysis on Chinese text has intensively studied. The basic task for related research is to construct an affective lexicon and thereby predict emotional scores of different levels. However, finite lexicon resources make it difficult to effectively and automatically distinguish between various types of sentiment information in Chinese texts. This IJCNLP2017-Task2 competition seeks to automatically calculate Valence and Arousal ratings within the hierarchies of vocabulary and phrases in Chinese. We introduce a regression methodology to automatically recognize continuous emotional values, and incorporate a word embedding technique. In our system, the MAE predictive values of Valence and Arousal were 0.811 and 0.996, respectively, for the sentiment dimension prediction of words in Chinese. In phrase prediction, the corresponding results were 0.822 and 0.489, ranking sixth among all teams.</abstract>
<identifier type="citekey">zhong-wang-2017-ldccnlp</identifier>
<location>
<url>https://aclanthology.org/I17-4013</url>
</location>
<part>
<date>2017-12</date>
<extent unit="page">
<start>84</start>
<end>88</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LDCCNLP at IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases Using Machine Learning
%A Zhong, Peng
%A Wang, Jingbin
%Y Liu, Chao-Hong
%Y Nakov, Preslav
%Y Xue, Nianwen
%S Proceedings of the IJCNLP 2017, Shared Tasks
%D 2017
%8 December
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F zhong-wang-2017-ldccnlp
%X Sentiment analysis on Chinese text has intensively studied. The basic task for related research is to construct an affective lexicon and thereby predict emotional scores of different levels. However, finite lexicon resources make it difficult to effectively and automatically distinguish between various types of sentiment information in Chinese texts. This IJCNLP2017-Task2 competition seeks to automatically calculate Valence and Arousal ratings within the hierarchies of vocabulary and phrases in Chinese. We introduce a regression methodology to automatically recognize continuous emotional values, and incorporate a word embedding technique. In our system, the MAE predictive values of Valence and Arousal were 0.811 and 0.996, respectively, for the sentiment dimension prediction of words in Chinese. In phrase prediction, the corresponding results were 0.822 and 0.489, ranking sixth among all teams.
%U https://aclanthology.org/I17-4013
%P 84-88
Markdown (Informal)
[LDCCNLP at IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases Using Machine Learning](https://aclanthology.org/I17-4013) (Zhong & Wang, IJCNLP 2017)
ACL