@inproceedings{wang-etal-2017-ynudlg,
title = "{YNUDLG} at {IJCNLP}-2017 Task 5: A {CNN}-{LSTM} Model with Attention for Multi-choice Question Answering in Examinations",
author = "Wang, Min and
Liu, Qingxun and
Ding, Peng and
Li, Yongbin and
Zhou, Xiaobing",
editor = "Liu, Chao-Hong and
Nakov, Preslav and
Xue, Nianwen",
booktitle = "Proceedings of the {IJCNLP} 2017, Shared Tasks",
month = dec,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-4032/",
pages = "194--198",
abstract = "In this paper, we perform convolutional neural networks (CNN) to learn the joint representations of question-answer pairs first, then use the joint representations as the inputs of the long short-term memory (LSTM) with attention to learn the answer sequence of a question for labeling the matching quality of each answer. We also incorporating external knowledge by training Word2Vec on Flashcards data, thus we get more compact embedding. Experimental results show that our method achieves better or comparable performance compared with the baseline system. The proposed approach achieves the accuracy of 0.39, 0.42 in English valid set, test set, respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2017-ynudlg">
<titleInfo>
<title>YNUDLG at IJCNLP-2017 Task 5: A CNN-LSTM Model with Attention for Multi-choice Question Answering in Examinations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qingxun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peng</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongbin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobing</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the IJCNLP 2017, Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chao-Hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we perform convolutional neural networks (CNN) to learn the joint representations of question-answer pairs first, then use the joint representations as the inputs of the long short-term memory (LSTM) with attention to learn the answer sequence of a question for labeling the matching quality of each answer. We also incorporating external knowledge by training Word2Vec on Flashcards data, thus we get more compact embedding. Experimental results show that our method achieves better or comparable performance compared with the baseline system. The proposed approach achieves the accuracy of 0.39, 0.42 in English valid set, test set, respectively.</abstract>
<identifier type="citekey">wang-etal-2017-ynudlg</identifier>
<location>
<url>https://aclanthology.org/I17-4032/</url>
</location>
<part>
<date>2017-12</date>
<extent unit="page">
<start>194</start>
<end>198</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNUDLG at IJCNLP-2017 Task 5: A CNN-LSTM Model with Attention for Multi-choice Question Answering in Examinations
%A Wang, Min
%A Liu, Qingxun
%A Ding, Peng
%A Li, Yongbin
%A Zhou, Xiaobing
%Y Liu, Chao-Hong
%Y Nakov, Preslav
%Y Xue, Nianwen
%S Proceedings of the IJCNLP 2017, Shared Tasks
%D 2017
%8 December
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F wang-etal-2017-ynudlg
%X In this paper, we perform convolutional neural networks (CNN) to learn the joint representations of question-answer pairs first, then use the joint representations as the inputs of the long short-term memory (LSTM) with attention to learn the answer sequence of a question for labeling the matching quality of each answer. We also incorporating external knowledge by training Word2Vec on Flashcards data, thus we get more compact embedding. Experimental results show that our method achieves better or comparable performance compared with the baseline system. The proposed approach achieves the accuracy of 0.39, 0.42 in English valid set, test set, respectively.
%U https://aclanthology.org/I17-4032/
%P 194-198
Markdown (Informal)
[YNUDLG at IJCNLP-2017 Task 5: A CNN-LSTM Model with Attention for Multi-choice Question Answering in Examinations](https://aclanthology.org/I17-4032/) (Wang et al., IJCNLP 2017)
ACL