@inproceedings{chen-etal-2018-simple,
title = "A Simple yet Effective Joint Training Method for Cross-Lingual {U}niversal {D}ependency Parsing",
author = "Chen, Danlu and
Lin, Mengxiao and
Hu, Zhifeng and
Qiu, Xipeng",
editor = "Zeman, Daniel and
Haji{\v{c}}, Jan",
booktitle = "Proceedings of the {C}o{NLL} 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K18-2026",
doi = "10.18653/v1/K18-2026",
pages = "256--263",
abstract = "This paper describes Fudan{'}s submission to CoNLL 2018{'}s shared task Universal Dependency Parsing. We jointly train models when two languages are similar according to linguistic typology and then ensemble the models using a simple re-parse algorithm. We outperform the baseline method by 4.4{\%} (2.1{\%}) on average on development (test) set in CoNLL 2018 UD Shared Task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2018-simple">
<titleInfo>
<title>A Simple yet Effective Joint Training Method for Cross-Lingual Universal Dependency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Danlu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengxiao</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhifeng</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes Fudan’s submission to CoNLL 2018’s shared task Universal Dependency Parsing. We jointly train models when two languages are similar according to linguistic typology and then ensemble the models using a simple re-parse algorithm. We outperform the baseline method by 4.4% (2.1%) on average on development (test) set in CoNLL 2018 UD Shared Task.</abstract>
<identifier type="citekey">chen-etal-2018-simple</identifier>
<identifier type="doi">10.18653/v1/K18-2026</identifier>
<location>
<url>https://aclanthology.org/K18-2026</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>256</start>
<end>263</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Simple yet Effective Joint Training Method for Cross-Lingual Universal Dependency Parsing
%A Chen, Danlu
%A Lin, Mengxiao
%A Hu, Zhifeng
%A Qiu, Xipeng
%Y Zeman, Daniel
%Y Hajič, Jan
%S Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F chen-etal-2018-simple
%X This paper describes Fudan’s submission to CoNLL 2018’s shared task Universal Dependency Parsing. We jointly train models when two languages are similar according to linguistic typology and then ensemble the models using a simple re-parse algorithm. We outperform the baseline method by 4.4% (2.1%) on average on development (test) set in CoNLL 2018 UD Shared Task.
%R 10.18653/v1/K18-2026
%U https://aclanthology.org/K18-2026
%U https://doi.org/10.18653/v1/K18-2026
%P 256-263
Markdown (Informal)
[A Simple yet Effective Joint Training Method for Cross-Lingual Universal Dependency Parsing](https://aclanthology.org/K18-2026) (Chen et al., CoNLL 2018)
ACL