Relation between Agreement Measures on Human Labeling and Machine Learning Performance: Results from an Art History Domain

Rebecca Passonneau, Tom Lippincott, Tae Yano, Judith Klavans


Abstract
We discuss factors that affect human agreement on a semantic labeling task in the art history domain, based on the results of four experiments where we varied the number of labels annotators could assign, the number of annotators, the type and amount of training they received, and the size of the text span being labeled. Using the labelings from one experiment involving seven annotators, we investigate the relation between interannotator agreement and machine learning performance. We construct binary classifiers and vary the training and test data by swapping the labelings from the seven annotators. First, we find performance is often quite good despite lower than recommended interannotator agreement. Second, we find that on average, learning performance for a given functional semantic category correlates with the overall agreement among the seven annotators for that category. Third, we find that learning performance on the data from a given annotator does not correlate with the quality of that annotator’s labeling. We offer recommendations for the use of labeled data in machine learning, and argue that learners should attempt to accommodate human variation. We also note implications for large scale corpus annotation projects that deal with similarly subjective phenomena.
Anthology ID:
L08-1167
Volume:
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)
Month:
May
Year:
2008
Address:
Marrakech, Morocco
Editors:
Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Daniel Tapias
Venue:
LREC
SIG:
Publisher:
European Language Resources Association (ELRA)
Note:
Pages:
Language:
URL:
http://www.lrec-conf.org/proceedings/lrec2008/pdf/722_paper.pdf
DOI:
Bibkey:
Cite (ACL):
Rebecca Passonneau, Tom Lippincott, Tae Yano, and Judith Klavans. 2008. Relation between Agreement Measures on Human Labeling and Machine Learning Performance: Results from an Art History Domain. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08), Marrakech, Morocco. European Language Resources Association (ELRA).
Cite (Informal):
Relation between Agreement Measures on Human Labeling and Machine Learning Performance: Results from an Art History Domain (Passonneau et al., LREC 2008)
Copy Citation:
PDF:
http://www.lrec-conf.org/proceedings/lrec2008/pdf/722_paper.pdf