@inproceedings{stewart-etal-2010-cross,
title = "Cross-Corpus Textual Entailment for Sublanguage Analysis in Epidemic Intelligence",
author = "Stewart, Avar{\'e} and
Denecke, Kerstin and
Nejdl, Wolfgang",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Rosner, Mike and
Tapias, Daniel",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/881_Paper.pdf",
abstract = "Textual entailment has been recognized as a generic task that captures major semantic inference needs across many natural language processing applications. However, to date, textual entailment has not been considered in a cross-corpus setting, nor for user generated content. Given the emergence of Medicine 2.0, medical blogs are becoming an increasingly accepted source of information. However, given the characteristics of blogs( which tend to be noisy and informal; or contain a interspersing of subjective and factual sentences) a potentially large amount of irrelevant information may be present. Given the potential noise, the overarching problem with respect to information extraction from social media is achieving the correct level of sentence filtering - as opposed to document or blog post level. Specifically for the task of medical intelligence gathering. In this paper, we propose an approach to textual entailment with uses the text from one source of user generated content (T text) for sentence-level filtering within a new and less amenable one (H text), when the underlying domain, tasks or semantic information is the same, or overlaps.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stewart-etal-2010-cross">
<titleInfo>
<title>Cross-Corpus Textual Entailment for Sublanguage Analysis in Epidemic Intelligence</title>
</titleInfo>
<name type="personal">
<namePart type="given">Avaré</namePart>
<namePart type="family">Stewart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kerstin</namePart>
<namePart type="family">Denecke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wolfgang</namePart>
<namePart type="family">Nejdl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2010-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Rosner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Valletta, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Textual entailment has been recognized as a generic task that captures major semantic inference needs across many natural language processing applications. However, to date, textual entailment has not been considered in a cross-corpus setting, nor for user generated content. Given the emergence of Medicine 2.0, medical blogs are becoming an increasingly accepted source of information. However, given the characteristics of blogs( which tend to be noisy and informal; or contain a interspersing of subjective and factual sentences) a potentially large amount of irrelevant information may be present. Given the potential noise, the overarching problem with respect to information extraction from social media is achieving the correct level of sentence filtering - as opposed to document or blog post level. Specifically for the task of medical intelligence gathering. In this paper, we propose an approach to textual entailment with uses the text from one source of user generated content (T text) for sentence-level filtering within a new and less amenable one (H text), when the underlying domain, tasks or semantic information is the same, or overlaps.</abstract>
<identifier type="citekey">stewart-etal-2010-cross</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2010/pdf/881_Paper.pdf</url>
</location>
<part>
<date>2010-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Corpus Textual Entailment for Sublanguage Analysis in Epidemic Intelligence
%A Stewart, Avaré
%A Denecke, Kerstin
%A Nejdl, Wolfgang
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Rosner, Mike
%Y Tapias, Daniel
%S Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10)
%D 2010
%8 May
%I European Language Resources Association (ELRA)
%C Valletta, Malta
%F stewart-etal-2010-cross
%X Textual entailment has been recognized as a generic task that captures major semantic inference needs across many natural language processing applications. However, to date, textual entailment has not been considered in a cross-corpus setting, nor for user generated content. Given the emergence of Medicine 2.0, medical blogs are becoming an increasingly accepted source of information. However, given the characteristics of blogs( which tend to be noisy and informal; or contain a interspersing of subjective and factual sentences) a potentially large amount of irrelevant information may be present. Given the potential noise, the overarching problem with respect to information extraction from social media is achieving the correct level of sentence filtering - as opposed to document or blog post level. Specifically for the task of medical intelligence gathering. In this paper, we propose an approach to textual entailment with uses the text from one source of user generated content (T text) for sentence-level filtering within a new and less amenable one (H text), when the underlying domain, tasks or semantic information is the same, or overlaps.
%U http://www.lrec-conf.org/proceedings/lrec2010/pdf/881_Paper.pdf
Markdown (Informal)
[Cross-Corpus Textual Entailment for Sublanguage Analysis in Epidemic Intelligence](http://www.lrec-conf.org/proceedings/lrec2010/pdf/881_Paper.pdf) (Stewart et al., LREC 2010)
ACL