On the use of a fuzzy classifier to speed up the Sp_ToBI labeling of the Glissando Spanish corpus

David Escudero, Lourdes Aguilar-Cuevas, César González-Ferreras, Yurena Gutiérrez-González, Valentín Cardeñoso-Payo


Abstract
In this paper, we present the application of a novel automatic prosodic labeling methodology for speeding up the manual labeling of the Glissando corpus (Spanish read news items). The methodology is based on the use of soft classification techniques. The output of the automatic system consists on a set of label candidates per word. The number of predicted candidates depends on the degree of certainty assigned by the classifier to each of the predictions. The manual transcriber checks the sets of predictions to select the correct one. We describe the fundamentals of the fuzzy classification tool and its training with a corpus labeled with Sp TOBI labels. Results show a clear coherence between the most confused labels in the output of the automatic classifier and the most confused labels detected in inter-transcriber consistency tests. More importantly, in a preliminary test, the real time ratio of the labeling process was 1:66 when the template of predictions is used and 1:80 when it is not.
Anthology ID:
L14-1049
Volume:
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)
Month:
May
Year:
2014
Address:
Reykjavik, Iceland
Editors:
Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, Stelios Piperidis
Venue:
LREC
SIG:
Publisher:
European Language Resources Association (ELRA)
Note:
Pages:
1962–1969
Language:
URL:
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1066_Paper.pdf
DOI:
Bibkey:
Cite (ACL):
David Escudero, Lourdes Aguilar-Cuevas, César González-Ferreras, Yurena Gutiérrez-González, and Valentín Cardeñoso-Payo. 2014. On the use of a fuzzy classifier to speed up the Sp_ToBI labeling of the Glissando Spanish corpus. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pages 1962–1969, Reykjavik, Iceland. European Language Resources Association (ELRA).
Cite (Informal):
On the use of a fuzzy classifier to speed up the Sp_ToBI labeling of the Glissando Spanish corpus (Escudero et al., LREC 2014)
Copy Citation:
PDF:
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1066_Paper.pdf