@inproceedings{pershina-etal-2016-entity,
title = "Entity Linking with a Paraphrase Flavor",
author = "Pershina, Maria and
He, Yifan and
Grishman, Ralph",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}`16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1088/",
pages = "556--560",
abstract = "The task of Named Entity Linking is to link entity mentions in the document to their correct entries in a knowledge base and to cluster NIL mentions. Ambiguous, misspelled, and incomplete entity mention names are the main challenges in the linking process. We propose a novel approach that combines two state-of-the-art models {\textemdash} for entity disambiguation and for paraphrase detection {\textemdash} to overcome these challenges. We consider name variations as paraphrases of the same entity mention and adopt a paraphrase model for this task. Our approach utilizes a graph-based disambiguation model based on Personalized Page Rank, and then refines and clusters its output using the paraphrase similarity between entity mention strings. It achieves a competitive performance of 80.5{\%} in B3+F clustering score on diagnostic TAC EDL 2014 data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pershina-etal-2016-entity">
<titleInfo>
<title>Entity Linking with a Paraphrase Flavor</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Pershina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yifan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ralph</namePart>
<namePart type="family">Grishman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The task of Named Entity Linking is to link entity mentions in the document to their correct entries in a knowledge base and to cluster NIL mentions. Ambiguous, misspelled, and incomplete entity mention names are the main challenges in the linking process. We propose a novel approach that combines two state-of-the-art models — for entity disambiguation and for paraphrase detection — to overcome these challenges. We consider name variations as paraphrases of the same entity mention and adopt a paraphrase model for this task. Our approach utilizes a graph-based disambiguation model based on Personalized Page Rank, and then refines and clusters its output using the paraphrase similarity between entity mention strings. It achieves a competitive performance of 80.5% in B3+F clustering score on diagnostic TAC EDL 2014 data.</abstract>
<identifier type="citekey">pershina-etal-2016-entity</identifier>
<location>
<url>https://aclanthology.org/L16-1088/</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>556</start>
<end>560</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Entity Linking with a Paraphrase Flavor
%A Pershina, Maria
%A He, Yifan
%A Grishman, Ralph
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F pershina-etal-2016-entity
%X The task of Named Entity Linking is to link entity mentions in the document to their correct entries in a knowledge base and to cluster NIL mentions. Ambiguous, misspelled, and incomplete entity mention names are the main challenges in the linking process. We propose a novel approach that combines two state-of-the-art models — for entity disambiguation and for paraphrase detection — to overcome these challenges. We consider name variations as paraphrases of the same entity mention and adopt a paraphrase model for this task. Our approach utilizes a graph-based disambiguation model based on Personalized Page Rank, and then refines and clusters its output using the paraphrase similarity between entity mention strings. It achieves a competitive performance of 80.5% in B3+F clustering score on diagnostic TAC EDL 2014 data.
%U https://aclanthology.org/L16-1088/
%P 556-560
Markdown (Informal)
[Entity Linking with a Paraphrase Flavor](https://aclanthology.org/L16-1088/) (Pershina et al., LREC 2016)
ACL
- Maria Pershina, Yifan He, and Ralph Grishman. 2016. Entity Linking with a Paraphrase Flavor. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 556–560, Portorož, Slovenia. European Language Resources Association (ELRA).