@inproceedings{mori-etal-2016-accuracy,
title = "Accuracy of Automatic Cross-Corpus Emotion Labeling for Conversational Speech Corpus Commonization",
author = "Mori, Hiroki and
Nagaoka, Atsushi and
Arimoto, Yoshiko",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1634",
pages = "4019--4023",
abstract = "There exists a major incompatibility in emotion labeling framework among emotional speech corpora, that is, category-based and dimension-based. Commonizing these requires inter-corpus emotion labeling according to both frameworks, but doing this by human annotators is too costly for most cases. This paper examines the possibility of automatic cross-corpus emotion labeling. In order to evaluate the effectiveness of the automatic labeling, a comprehensive emotion annotation for two conversational corpora, UUDB and OGVC, was performed. With a state-of-the-art machine learning technique, dimensional and categorical emotion estimation models were trained and tested against the two corpora. For the emotion dimension estimation, the automatic cross-corpus emotion labeling for the different corpus was effective for the dimensions of aroused-sleepy, dominant-submissive and interested-indifferent, showing only slight performance degradation against the result for the same corpus. On the other hand, the performance for the emotion category estimation was not sufficient.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mori-etal-2016-accuracy">
<titleInfo>
<title>Accuracy of Automatic Cross-Corpus Emotion Labeling for Conversational Speech Corpus Commonization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hiroki</namePart>
<namePart type="family">Mori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atsushi</namePart>
<namePart type="family">Nagaoka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoshiko</namePart>
<namePart type="family">Arimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>There exists a major incompatibility in emotion labeling framework among emotional speech corpora, that is, category-based and dimension-based. Commonizing these requires inter-corpus emotion labeling according to both frameworks, but doing this by human annotators is too costly for most cases. This paper examines the possibility of automatic cross-corpus emotion labeling. In order to evaluate the effectiveness of the automatic labeling, a comprehensive emotion annotation for two conversational corpora, UUDB and OGVC, was performed. With a state-of-the-art machine learning technique, dimensional and categorical emotion estimation models were trained and tested against the two corpora. For the emotion dimension estimation, the automatic cross-corpus emotion labeling for the different corpus was effective for the dimensions of aroused-sleepy, dominant-submissive and interested-indifferent, showing only slight performance degradation against the result for the same corpus. On the other hand, the performance for the emotion category estimation was not sufficient.</abstract>
<identifier type="citekey">mori-etal-2016-accuracy</identifier>
<location>
<url>https://aclanthology.org/L16-1634</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>4019</start>
<end>4023</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Accuracy of Automatic Cross-Corpus Emotion Labeling for Conversational Speech Corpus Commonization
%A Mori, Hiroki
%A Nagaoka, Atsushi
%A Arimoto, Yoshiko
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F mori-etal-2016-accuracy
%X There exists a major incompatibility in emotion labeling framework among emotional speech corpora, that is, category-based and dimension-based. Commonizing these requires inter-corpus emotion labeling according to both frameworks, but doing this by human annotators is too costly for most cases. This paper examines the possibility of automatic cross-corpus emotion labeling. In order to evaluate the effectiveness of the automatic labeling, a comprehensive emotion annotation for two conversational corpora, UUDB and OGVC, was performed. With a state-of-the-art machine learning technique, dimensional and categorical emotion estimation models were trained and tested against the two corpora. For the emotion dimension estimation, the automatic cross-corpus emotion labeling for the different corpus was effective for the dimensions of aroused-sleepy, dominant-submissive and interested-indifferent, showing only slight performance degradation against the result for the same corpus. On the other hand, the performance for the emotion category estimation was not sufficient.
%U https://aclanthology.org/L16-1634
%P 4019-4023
Markdown (Informal)
[Accuracy of Automatic Cross-Corpus Emotion Labeling for Conversational Speech Corpus Commonization](https://aclanthology.org/L16-1634) (Mori et al., LREC 2016)
ACL