@inproceedings{rei-sogaard-2018-zero,
title = "Zero-Shot Sequence Labeling: Transferring Knowledge from Sentences to Tokens",
author = "Rei, Marek and
S{\o}gaard, Anders",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1027/",
doi = "10.18653/v1/N18-1027",
pages = "293--302",
abstract = "Can attention- or gradient-based visualization techniques be used to infer token-level labels for binary sequence tagging problems, using networks trained only on sentence-level labels? We construct a neural network architecture based on soft attention, train it as a binary sentence classifier and evaluate against token-level annotation on four different datasets. Inferring token labels from a network provides a method for quantitatively evaluating what the model is learning, along with generating useful feedback in assistance systems. Our results indicate that attention-based methods are able to predict token-level labels more accurately, compared to gradient-based methods, sometimes even rivaling the supervised oracle network."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rei-sogaard-2018-zero">
<titleInfo>
<title>Zero-Shot Sequence Labeling: Transferring Knowledge from Sentences to Tokens</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Rei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Can attention- or gradient-based visualization techniques be used to infer token-level labels for binary sequence tagging problems, using networks trained only on sentence-level labels? We construct a neural network architecture based on soft attention, train it as a binary sentence classifier and evaluate against token-level annotation on four different datasets. Inferring token labels from a network provides a method for quantitatively evaluating what the model is learning, along with generating useful feedback in assistance systems. Our results indicate that attention-based methods are able to predict token-level labels more accurately, compared to gradient-based methods, sometimes even rivaling the supervised oracle network.</abstract>
<identifier type="citekey">rei-sogaard-2018-zero</identifier>
<identifier type="doi">10.18653/v1/N18-1027</identifier>
<location>
<url>https://aclanthology.org/N18-1027/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>293</start>
<end>302</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Zero-Shot Sequence Labeling: Transferring Knowledge from Sentences to Tokens
%A Rei, Marek
%A Søgaard, Anders
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F rei-sogaard-2018-zero
%X Can attention- or gradient-based visualization techniques be used to infer token-level labels for binary sequence tagging problems, using networks trained only on sentence-level labels? We construct a neural network architecture based on soft attention, train it as a binary sentence classifier and evaluate against token-level annotation on four different datasets. Inferring token labels from a network provides a method for quantitatively evaluating what the model is learning, along with generating useful feedback in assistance systems. Our results indicate that attention-based methods are able to predict token-level labels more accurately, compared to gradient-based methods, sometimes even rivaling the supervised oracle network.
%R 10.18653/v1/N18-1027
%U https://aclanthology.org/N18-1027/
%U https://doi.org/10.18653/v1/N18-1027
%P 293-302
Markdown (Informal)
[Zero-Shot Sequence Labeling: Transferring Knowledge from Sentences to Tokens](https://aclanthology.org/N18-1027/) (Rei & Søgaard, NAACL 2018)
ACL