@inproceedings{narayan-etal-2018-ranking,
title = "Ranking Sentences for Extractive Summarization with Reinforcement Learning",
author = "Narayan, Shashi and
Cohen, Shay B. and
Lapata, Mirella",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1158/",
doi = "10.18653/v1/N18-1158",
pages = "1747--1759",
abstract = "Single document summarization is the task of producing a shorter version of a document while preserving its principal information content. In this paper we conceptualize extractive summarization as a sentence ranking task and propose a novel training algorithm which globally optimizes the ROUGE evaluation metric through a reinforcement learning objective. We use our algorithm to train a neural summarization model on the CNN and DailyMail datasets and demonstrate experimentally that it outperforms state-of-the-art extractive and abstractive systems when evaluated automatically and by humans."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="narayan-etal-2018-ranking">
<titleInfo>
<title>Ranking Sentences for Extractive Summarization with Reinforcement Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shashi</namePart>
<namePart type="family">Narayan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shay</namePart>
<namePart type="given">B</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Single document summarization is the task of producing a shorter version of a document while preserving its principal information content. In this paper we conceptualize extractive summarization as a sentence ranking task and propose a novel training algorithm which globally optimizes the ROUGE evaluation metric through a reinforcement learning objective. We use our algorithm to train a neural summarization model on the CNN and DailyMail datasets and demonstrate experimentally that it outperforms state-of-the-art extractive and abstractive systems when evaluated automatically and by humans.</abstract>
<identifier type="citekey">narayan-etal-2018-ranking</identifier>
<identifier type="doi">10.18653/v1/N18-1158</identifier>
<location>
<url>https://aclanthology.org/N18-1158/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1747</start>
<end>1759</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ranking Sentences for Extractive Summarization with Reinforcement Learning
%A Narayan, Shashi
%A Cohen, Shay B.
%A Lapata, Mirella
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F narayan-etal-2018-ranking
%X Single document summarization is the task of producing a shorter version of a document while preserving its principal information content. In this paper we conceptualize extractive summarization as a sentence ranking task and propose a novel training algorithm which globally optimizes the ROUGE evaluation metric through a reinforcement learning objective. We use our algorithm to train a neural summarization model on the CNN and DailyMail datasets and demonstrate experimentally that it outperforms state-of-the-art extractive and abstractive systems when evaluated automatically and by humans.
%R 10.18653/v1/N18-1158
%U https://aclanthology.org/N18-1158/
%U https://doi.org/10.18653/v1/N18-1158
%P 1747-1759
Markdown (Informal)
[Ranking Sentences for Extractive Summarization with Reinforcement Learning](https://aclanthology.org/N18-1158/) (Narayan et al., NAACL 2018)
ACL
- Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Ranking Sentences for Extractive Summarization with Reinforcement Learning. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1747–1759, New Orleans, Louisiana. Association for Computational Linguistics.