@inproceedings{kenyon-dean-etal-2018-sentiment,
title = "Sentiment Analysis: It`s Complicated!",
author = "Kenyon-Dean, Kian and
Ahmed, Eisha and
Fujimoto, Scott and
Georges-Filteau, Jeremy and
Glasz, Christopher and
Kaur, Barleen and
Lalande, Auguste and
Bhanderi, Shruti and
Belfer, Robert and
Kanagasabai, Nirmal and
Sarrazingendron, Roman and
Verma, Rohit and
Ruths, Derek",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1171/",
doi = "10.18653/v1/N18-1171",
pages = "1886--1895",
abstract = "Sentiment analysis is used as a proxy to measure human emotion, where the objective is to categorize text according to some predefined notion of sentiment. Sentiment analysis datasets are typically constructed with gold-standard sentiment labels, assigned based on the results of manual annotations. When working with such annotations, it is common for dataset constructors to discard {\textquotedblleft}noisy{\textquotedblright} or {\textquotedblleft}controversial{\textquotedblright} data where there is significant disagreement on the proper label. In datasets constructed for the purpose of Twitter sentiment analysis (TSA), these controversial examples can compose over 30{\%} of the originally annotated data. We argue that the removal of such data is a problematic trend because, when performing real-time sentiment classification of short-text, an automated system cannot know a priori which samples would fall into this category of disputed sentiment. We therefore propose the notion of a {\textquotedblleft}complicated{\textquotedblright} class of sentiment to categorize such text, and argue that its inclusion in the short-text sentiment analysis framework will improve the quality of automated sentiment analysis systems as they are implemented in real-world settings. We motivate this argument by building and analyzing a new publicly available TSA dataset of over 7,000 tweets annotated with 5x coverage, named MTSA. Our analysis of classifier performance over our dataset offers insights into sentiment analysis dataset and model design, how current techniques would perform in the real world, and how researchers should handle difficult data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kenyon-dean-etal-2018-sentiment">
<titleInfo>
<title>Sentiment Analysis: It‘s Complicated!</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kian</namePart>
<namePart type="family">Kenyon-Dean</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eisha</namePart>
<namePart type="family">Ahmed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="family">Fujimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Georges-Filteau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Glasz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barleen</namePart>
<namePart type="family">Kaur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Auguste</namePart>
<namePart type="family">Lalande</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shruti</namePart>
<namePart type="family">Bhanderi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Belfer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nirmal</namePart>
<namePart type="family">Kanagasabai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Sarrazingendron</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rohit</namePart>
<namePart type="family">Verma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="family">Ruths</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment analysis is used as a proxy to measure human emotion, where the objective is to categorize text according to some predefined notion of sentiment. Sentiment analysis datasets are typically constructed with gold-standard sentiment labels, assigned based on the results of manual annotations. When working with such annotations, it is common for dataset constructors to discard “noisy” or “controversial” data where there is significant disagreement on the proper label. In datasets constructed for the purpose of Twitter sentiment analysis (TSA), these controversial examples can compose over 30% of the originally annotated data. We argue that the removal of such data is a problematic trend because, when performing real-time sentiment classification of short-text, an automated system cannot know a priori which samples would fall into this category of disputed sentiment. We therefore propose the notion of a “complicated” class of sentiment to categorize such text, and argue that its inclusion in the short-text sentiment analysis framework will improve the quality of automated sentiment analysis systems as they are implemented in real-world settings. We motivate this argument by building and analyzing a new publicly available TSA dataset of over 7,000 tweets annotated with 5x coverage, named MTSA. Our analysis of classifier performance over our dataset offers insights into sentiment analysis dataset and model design, how current techniques would perform in the real world, and how researchers should handle difficult data.</abstract>
<identifier type="citekey">kenyon-dean-etal-2018-sentiment</identifier>
<identifier type="doi">10.18653/v1/N18-1171</identifier>
<location>
<url>https://aclanthology.org/N18-1171/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1886</start>
<end>1895</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentiment Analysis: It‘s Complicated!
%A Kenyon-Dean, Kian
%A Ahmed, Eisha
%A Fujimoto, Scott
%A Georges-Filteau, Jeremy
%A Glasz, Christopher
%A Kaur, Barleen
%A Lalande, Auguste
%A Bhanderi, Shruti
%A Belfer, Robert
%A Kanagasabai, Nirmal
%A Sarrazingendron, Roman
%A Verma, Rohit
%A Ruths, Derek
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F kenyon-dean-etal-2018-sentiment
%X Sentiment analysis is used as a proxy to measure human emotion, where the objective is to categorize text according to some predefined notion of sentiment. Sentiment analysis datasets are typically constructed with gold-standard sentiment labels, assigned based on the results of manual annotations. When working with such annotations, it is common for dataset constructors to discard “noisy” or “controversial” data where there is significant disagreement on the proper label. In datasets constructed for the purpose of Twitter sentiment analysis (TSA), these controversial examples can compose over 30% of the originally annotated data. We argue that the removal of such data is a problematic trend because, when performing real-time sentiment classification of short-text, an automated system cannot know a priori which samples would fall into this category of disputed sentiment. We therefore propose the notion of a “complicated” class of sentiment to categorize such text, and argue that its inclusion in the short-text sentiment analysis framework will improve the quality of automated sentiment analysis systems as they are implemented in real-world settings. We motivate this argument by building and analyzing a new publicly available TSA dataset of over 7,000 tweets annotated with 5x coverage, named MTSA. Our analysis of classifier performance over our dataset offers insights into sentiment analysis dataset and model design, how current techniques would perform in the real world, and how researchers should handle difficult data.
%R 10.18653/v1/N18-1171
%U https://aclanthology.org/N18-1171/
%U https://doi.org/10.18653/v1/N18-1171
%P 1886-1895
Markdown (Informal)
[Sentiment Analysis: It’s Complicated!](https://aclanthology.org/N18-1171/) (Kenyon-Dean et al., NAACL 2018)
ACL
- Kian Kenyon-Dean, Eisha Ahmed, Scott Fujimoto, Jeremy Georges-Filteau, Christopher Glasz, Barleen Kaur, Auguste Lalande, Shruti Bhanderi, Robert Belfer, Nirmal Kanagasabai, Roman Sarrazingendron, Rohit Verma, and Derek Ruths. 2018. Sentiment Analysis: It’s Complicated!. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1886–1895, New Orleans, Louisiana. Association for Computational Linguistics.