@inproceedings{liu-etal-2018-recurrent,
    title = "Recurrent Entity Networks with Delayed Memory Update for Targeted Aspect-Based Sentiment Analysis",
    author = "Liu, Fei  and
      Cohn, Trevor  and
      Baldwin, Timothy",
    editor = "Walker, Marilyn  and
      Ji, Heng  and
      Stent, Amanda",
    booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/N18-2045/",
    doi = "10.18653/v1/N18-2045",
    pages = "278--283",
    abstract = "While neural networks have been shown to achieve impressive results for sentence-level sentiment analysis, targeted aspect-based sentiment analysis (TABSA) {---} extraction of fine-grained opinion polarity w.r.t. a pre-defined set of aspects {---} remains a difficult task. Motivated by recent advances in memory-augmented models for machine reading, we propose a novel architecture, utilising external ``memory chains'' with a delayed memory update mechanism to track entities. On a TABSA task, the proposed model demonstrates substantial improvements over state-of-the-art approaches, including those using external knowledge bases."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2018-recurrent">
    <titleInfo>
        <title>Recurrent Entity Networks with Delayed Memory Update for Targeted Aspect-Based Sentiment Analysis</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Fei</namePart>
        <namePart type="family">Liu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Trevor</namePart>
        <namePart type="family">Cohn</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Timothy</namePart>
        <namePart type="family">Baldwin</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Marilyn</namePart>
            <namePart type="family">Walker</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Heng</namePart>
            <namePart type="family">Ji</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Amanda</namePart>
            <namePart type="family">Stent</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>While neural networks have been shown to achieve impressive results for sentence-level sentiment analysis, targeted aspect-based sentiment analysis (TABSA) — extraction of fine-grained opinion polarity w.r.t. a pre-defined set of aspects — remains a difficult task. Motivated by recent advances in memory-augmented models for machine reading, we propose a novel architecture, utilising external “memory chains” with a delayed memory update mechanism to track entities. On a TABSA task, the proposed model demonstrates substantial improvements over state-of-the-art approaches, including those using external knowledge bases.</abstract>
    <identifier type="citekey">liu-etal-2018-recurrent</identifier>
    <identifier type="doi">10.18653/v1/N18-2045</identifier>
    <location>
        <url>https://aclanthology.org/N18-2045/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>278</start>
            <end>283</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Recurrent Entity Networks with Delayed Memory Update for Targeted Aspect-Based Sentiment Analysis
%A Liu, Fei
%A Cohn, Trevor
%A Baldwin, Timothy
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F liu-etal-2018-recurrent
%X While neural networks have been shown to achieve impressive results for sentence-level sentiment analysis, targeted aspect-based sentiment analysis (TABSA) — extraction of fine-grained opinion polarity w.r.t. a pre-defined set of aspects — remains a difficult task. Motivated by recent advances in memory-augmented models for machine reading, we propose a novel architecture, utilising external “memory chains” with a delayed memory update mechanism to track entities. On a TABSA task, the proposed model demonstrates substantial improvements over state-of-the-art approaches, including those using external knowledge bases.
%R 10.18653/v1/N18-2045
%U https://aclanthology.org/N18-2045/
%U https://doi.org/10.18653/v1/N18-2045
%P 278-283
Markdown (Informal)
[Recurrent Entity Networks with Delayed Memory Update for Targeted Aspect-Based Sentiment Analysis](https://aclanthology.org/N18-2045/) (Liu et al., NAACL 2018)
ACL