@inproceedings{sasaki-etal-2018-cross,
title = "Cross-Lingual Learning-to-Rank with Shared Representations",
author = "Sasaki, Shota and
Sun, Shuo and
Schamoni, Shigehiko and
Duh, Kevin and
Inui, Kentaro",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2073/",
doi = "10.18653/v1/N18-2073",
pages = "458--463",
abstract = "Cross-lingual information retrieval (CLIR) is a document retrieval task where the documents are written in a language different from that of the user`s query. This is a challenging problem for data-driven approaches due to the general lack of labeled training data. We introduce a large-scale dataset derived from Wikipedia to support CLIR research in 25 languages. Further, we present a simple yet effective neural learning-to-rank model that shares representations across languages and reduces the data requirement. This model can exploit training data in, for example, Japanese-English CLIR to improve the results of Swahili-English CLIR."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sasaki-etal-2018-cross">
<titleInfo>
<title>Cross-Lingual Learning-to-Rank with Shared Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shota</namePart>
<namePart type="family">Sasaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuo</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shigehiko</namePart>
<namePart type="family">Schamoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cross-lingual information retrieval (CLIR) is a document retrieval task where the documents are written in a language different from that of the user‘s query. This is a challenging problem for data-driven approaches due to the general lack of labeled training data. We introduce a large-scale dataset derived from Wikipedia to support CLIR research in 25 languages. Further, we present a simple yet effective neural learning-to-rank model that shares representations across languages and reduces the data requirement. This model can exploit training data in, for example, Japanese-English CLIR to improve the results of Swahili-English CLIR.</abstract>
<identifier type="citekey">sasaki-etal-2018-cross</identifier>
<identifier type="doi">10.18653/v1/N18-2073</identifier>
<location>
<url>https://aclanthology.org/N18-2073/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>458</start>
<end>463</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Lingual Learning-to-Rank with Shared Representations
%A Sasaki, Shota
%A Sun, Shuo
%A Schamoni, Shigehiko
%A Duh, Kevin
%A Inui, Kentaro
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F sasaki-etal-2018-cross
%X Cross-lingual information retrieval (CLIR) is a document retrieval task where the documents are written in a language different from that of the user‘s query. This is a challenging problem for data-driven approaches due to the general lack of labeled training data. We introduce a large-scale dataset derived from Wikipedia to support CLIR research in 25 languages. Further, we present a simple yet effective neural learning-to-rank model that shares representations across languages and reduces the data requirement. This model can exploit training data in, for example, Japanese-English CLIR to improve the results of Swahili-English CLIR.
%R 10.18653/v1/N18-2073
%U https://aclanthology.org/N18-2073/
%U https://doi.org/10.18653/v1/N18-2073
%P 458-463
Markdown (Informal)
[Cross-Lingual Learning-to-Rank with Shared Representations](https://aclanthology.org/N18-2073/) (Sasaki et al., NAACL 2018)
ACL
- Shota Sasaki, Shuo Sun, Shigehiko Schamoni, Kevin Duh, and Kentaro Inui. 2018. Cross-Lingual Learning-to-Rank with Shared Representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 458–463, New Orleans, Louisiana. Association for Computational Linguistics.