@inproceedings{cotterell-etal-2018-unsupervised,
title = "Unsupervised Disambiguation of Syncretism in Inflected Lexicons",
author = "Cotterell, Ryan and
Kirov, Christo and
Mielke, Sabrina J. and
Eisner, Jason",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2087",
doi = "10.18653/v1/N18-2087",
pages = "548--553",
abstract = "Lexical ambiguity makes it difficult to compute useful statistics of a corpus. A given word form might represent any of several morphological feature bundles. One can, however, use unsupervised learning (as in EM) to fit a model that probabilistically disambiguates word forms. We present such an approach, which employs a neural network to smoothly model a prior distribution over feature bundles (even rare ones). Although this basic model does not consider a token{'}s context, that very property allows it to operate on a simple list of unigram type counts, partitioning each count among different analyses of that unigram. We discuss evaluation metrics for this novel task and report results on 5 languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cotterell-etal-2018-unsupervised">
<titleInfo>
<title>Unsupervised Disambiguation of Syncretism in Inflected Lexicons</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christo</namePart>
<namePart type="family">Kirov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabrina</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Mielke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Eisner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lexical ambiguity makes it difficult to compute useful statistics of a corpus. A given word form might represent any of several morphological feature bundles. One can, however, use unsupervised learning (as in EM) to fit a model that probabilistically disambiguates word forms. We present such an approach, which employs a neural network to smoothly model a prior distribution over feature bundles (even rare ones). Although this basic model does not consider a token’s context, that very property allows it to operate on a simple list of unigram type counts, partitioning each count among different analyses of that unigram. We discuss evaluation metrics for this novel task and report results on 5 languages.</abstract>
<identifier type="citekey">cotterell-etal-2018-unsupervised</identifier>
<identifier type="doi">10.18653/v1/N18-2087</identifier>
<location>
<url>https://aclanthology.org/N18-2087</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>548</start>
<end>553</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Disambiguation of Syncretism in Inflected Lexicons
%A Cotterell, Ryan
%A Kirov, Christo
%A Mielke, Sabrina J.
%A Eisner, Jason
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F cotterell-etal-2018-unsupervised
%X Lexical ambiguity makes it difficult to compute useful statistics of a corpus. A given word form might represent any of several morphological feature bundles. One can, however, use unsupervised learning (as in EM) to fit a model that probabilistically disambiguates word forms. We present such an approach, which employs a neural network to smoothly model a prior distribution over feature bundles (even rare ones). Although this basic model does not consider a token’s context, that very property allows it to operate on a simple list of unigram type counts, partitioning each count among different analyses of that unigram. We discuss evaluation metrics for this novel task and report results on 5 languages.
%R 10.18653/v1/N18-2087
%U https://aclanthology.org/N18-2087
%U https://doi.org/10.18653/v1/N18-2087
%P 548-553
Markdown (Informal)
[Unsupervised Disambiguation of Syncretism in Inflected Lexicons](https://aclanthology.org/N18-2087) (Cotterell et al., NAACL 2018)
ACL
- Ryan Cotterell, Christo Kirov, Sabrina J. Mielke, and Jason Eisner. 2018. Unsupervised Disambiguation of Syncretism in Inflected Lexicons. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 548–553, New Orleans, Louisiana. Association for Computational Linguistics.