@inproceedings{jain-etal-2018-mixed,
title = "A Mixed Hierarchical Attention Based Encoder-Decoder Approach for Standard Table Summarization",
author = "Jain, Parag and
Laha, Anirban and
Sankaranarayanan, Karthik and
Nema, Preksha and
Khapra, Mitesh M. and
Shetty, Shreyas",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2098",
doi = "10.18653/v1/N18-2098",
pages = "622--627",
abstract = "Structured data summarization involves generation of natural language summaries from structured input data. In this work, we consider summarizing structured data occurring in the form of tables as they are prevalent across a wide variety of domains. We formulate the standard table summarization problem, which deals with tables conforming to a single predefined schema. To this end, we propose a mixed hierarchical attention based encoder-decoder model which is able to leverage the structure in addition to the content of the tables. Our experiments on the publicly available weathergov dataset show around 18 BLEU (around 30{\%}) improvement over the current state-of-the-art.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jain-etal-2018-mixed">
<titleInfo>
<title>A Mixed Hierarchical Attention Based Encoder-Decoder Approach for Standard Table Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Parag</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anirban</namePart>
<namePart type="family">Laha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karthik</namePart>
<namePart type="family">Sankaranarayanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preksha</namePart>
<namePart type="family">Nema</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mitesh</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Khapra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shreyas</namePart>
<namePart type="family">Shetty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Structured data summarization involves generation of natural language summaries from structured input data. In this work, we consider summarizing structured data occurring in the form of tables as they are prevalent across a wide variety of domains. We formulate the standard table summarization problem, which deals with tables conforming to a single predefined schema. To this end, we propose a mixed hierarchical attention based encoder-decoder model which is able to leverage the structure in addition to the content of the tables. Our experiments on the publicly available weathergov dataset show around 18 BLEU (around 30%) improvement over the current state-of-the-art.</abstract>
<identifier type="citekey">jain-etal-2018-mixed</identifier>
<identifier type="doi">10.18653/v1/N18-2098</identifier>
<location>
<url>https://aclanthology.org/N18-2098</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>622</start>
<end>627</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Mixed Hierarchical Attention Based Encoder-Decoder Approach for Standard Table Summarization
%A Jain, Parag
%A Laha, Anirban
%A Sankaranarayanan, Karthik
%A Nema, Preksha
%A Khapra, Mitesh M.
%A Shetty, Shreyas
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F jain-etal-2018-mixed
%X Structured data summarization involves generation of natural language summaries from structured input data. In this work, we consider summarizing structured data occurring in the form of tables as they are prevalent across a wide variety of domains. We formulate the standard table summarization problem, which deals with tables conforming to a single predefined schema. To this end, we propose a mixed hierarchical attention based encoder-decoder model which is able to leverage the structure in addition to the content of the tables. Our experiments on the publicly available weathergov dataset show around 18 BLEU (around 30%) improvement over the current state-of-the-art.
%R 10.18653/v1/N18-2098
%U https://aclanthology.org/N18-2098
%U https://doi.org/10.18653/v1/N18-2098
%P 622-627
Markdown (Informal)
[A Mixed Hierarchical Attention Based Encoder-Decoder Approach for Standard Table Summarization](https://aclanthology.org/N18-2098) (Jain et al., NAACL 2018)
ACL