@inproceedings{chen-gimpel-2018-smaller,
title = "Smaller Text Classifiers with Discriminative Cluster Embeddings",
author = "Chen, Mingda and
Gimpel, Kevin",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2116/",
doi = "10.18653/v1/N18-2116",
pages = "739--745",
abstract = "Word embedding parameters often dominate overall model sizes in neural methods for natural language processing. We reduce deployed model sizes of text classifiers by learning a hard word clustering in an end-to-end manner. We use the Gumbel-Softmax distribution to maximize over the latent clustering while minimizing the task loss. We propose variations that selectively assign additional parameters to words, which further improves accuracy while still remaining parameter-efficient."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-gimpel-2018-smaller">
<titleInfo>
<title>Smaller Text Classifiers with Discriminative Cluster Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mingda</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Gimpel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word embedding parameters often dominate overall model sizes in neural methods for natural language processing. We reduce deployed model sizes of text classifiers by learning a hard word clustering in an end-to-end manner. We use the Gumbel-Softmax distribution to maximize over the latent clustering while minimizing the task loss. We propose variations that selectively assign additional parameters to words, which further improves accuracy while still remaining parameter-efficient.</abstract>
<identifier type="citekey">chen-gimpel-2018-smaller</identifier>
<identifier type="doi">10.18653/v1/N18-2116</identifier>
<location>
<url>https://aclanthology.org/N18-2116/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>739</start>
<end>745</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Smaller Text Classifiers with Discriminative Cluster Embeddings
%A Chen, Mingda
%A Gimpel, Kevin
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F chen-gimpel-2018-smaller
%X Word embedding parameters often dominate overall model sizes in neural methods for natural language processing. We reduce deployed model sizes of text classifiers by learning a hard word clustering in an end-to-end manner. We use the Gumbel-Softmax distribution to maximize over the latent clustering while minimizing the task loss. We propose variations that selectively assign additional parameters to words, which further improves accuracy while still remaining parameter-efficient.
%R 10.18653/v1/N18-2116
%U https://aclanthology.org/N18-2116/
%U https://doi.org/10.18653/v1/N18-2116
%P 739-745
Markdown (Informal)
[Smaller Text Classifiers with Discriminative Cluster Embeddings](https://aclanthology.org/N18-2116/) (Chen & Gimpel, NAACL 2018)
ACL
- Mingda Chen and Kevin Gimpel. 2018. Smaller Text Classifiers with Discriminative Cluster Embeddings. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 739–745, New Orleans, Louisiana. Association for Computational Linguistics.