@inproceedings{gangadharaiah-etal-2018-need,
title = "What we need to learn if we want to do and not just talk",
author = "Gangadharaiah, Rashmi and
Narayanaswamy, Balakrishnan and
Elkan, Charles",
editor = "Bangalore, Srinivas and
Chu-Carroll, Jennifer and
Li, Yunyao",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)",
month = jun,
year = "2018",
address = "New Orleans - Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-3004",
doi = "10.18653/v1/N18-3004",
pages = "25--32",
abstract = "In task-oriented dialog, agents need to generate both fluent natural language responses and correct external actions like database queries and updates. Our paper makes the first attempt at evaluating state of the art models on a large real world task with human users. We show that methods that achieve state of the art performance on synthetic datasets, perform poorly in real world dialog tasks. We propose a hybrid model, where nearest neighbor is used to generate fluent responses and Seq2Seq type models ensure dialogue coherency and generate accurate external actions. The hybrid model on the customer support data achieves a 78{\%} relative improvement in fluency, and a 200{\%} improvement in accuracy of external calls.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gangadharaiah-etal-2018-need">
<titleInfo>
<title>What we need to learn if we want to do and not just talk</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Gangadharaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Balakrishnan</namePart>
<namePart type="family">Narayanaswamy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Charles</namePart>
<namePart type="family">Elkan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Srinivas</namePart>
<namePart type="family">Bangalore</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jennifer</namePart>
<namePart type="family">Chu-Carroll</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans - Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In task-oriented dialog, agents need to generate both fluent natural language responses and correct external actions like database queries and updates. Our paper makes the first attempt at evaluating state of the art models on a large real world task with human users. We show that methods that achieve state of the art performance on synthetic datasets, perform poorly in real world dialog tasks. We propose a hybrid model, where nearest neighbor is used to generate fluent responses and Seq2Seq type models ensure dialogue coherency and generate accurate external actions. The hybrid model on the customer support data achieves a 78% relative improvement in fluency, and a 200% improvement in accuracy of external calls.</abstract>
<identifier type="citekey">gangadharaiah-etal-2018-need</identifier>
<identifier type="doi">10.18653/v1/N18-3004</identifier>
<location>
<url>https://aclanthology.org/N18-3004</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>25</start>
<end>32</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What we need to learn if we want to do and not just talk
%A Gangadharaiah, Rashmi
%A Narayanaswamy, Balakrishnan
%A Elkan, Charles
%Y Bangalore, Srinivas
%Y Chu-Carroll, Jennifer
%Y Li, Yunyao
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans - Louisiana
%F gangadharaiah-etal-2018-need
%X In task-oriented dialog, agents need to generate both fluent natural language responses and correct external actions like database queries and updates. Our paper makes the first attempt at evaluating state of the art models on a large real world task with human users. We show that methods that achieve state of the art performance on synthetic datasets, perform poorly in real world dialog tasks. We propose a hybrid model, where nearest neighbor is used to generate fluent responses and Seq2Seq type models ensure dialogue coherency and generate accurate external actions. The hybrid model on the customer support data achieves a 78% relative improvement in fluency, and a 200% improvement in accuracy of external calls.
%R 10.18653/v1/N18-3004
%U https://aclanthology.org/N18-3004
%U https://doi.org/10.18653/v1/N18-3004
%P 25-32
Markdown (Informal)
[What we need to learn if we want to do and not just talk](https://aclanthology.org/N18-3004) (Gangadharaiah et al., NAACL 2018)
ACL
- Rashmi Gangadharaiah, Balakrishnan Narayanaswamy, and Charles Elkan. 2018. What we need to learn if we want to do and not just talk. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers), pages 25–32, New Orleans - Louisiana. Association for Computational Linguistics.