@inproceedings{ambroselli-etal-2018-prediction,
title = "Prediction for the Newsroom: Which Articles Will Get the Most Comments?",
author = "Ambroselli, Carl and
Risch, Julian and
Krestel, Ralf and
Loos, Andreas",
editor = "Bangalore, Srinivas and
Chu-Carroll, Jennifer and
Li, Yunyao",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)",
month = jun,
year = "2018",
address = "New Orleans - Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-3024",
doi = "10.18653/v1/N18-3024",
pages = "193--199",
abstract = "The overwhelming success of the Web and mobile technologies has enabled millions to share their opinions publicly at any time. But the same success also endangers this freedom of speech due to closing down of participatory sites misused by individuals or interest groups. We propose to support manual moderation by proactively drawing the attention of our moderators to article discussions that most likely need their intervention. To this end, we predict which articles will receive a high number of comments. In contrast to existing work, we enrich the article with metadata, extract semantic and linguistic features, and exploit annotated data from a foreign language corpus. Our logistic regression model improves F1-scores by over 80{\%} in comparison to state-of-the-art approaches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ambroselli-etal-2018-prediction">
<titleInfo>
<title>Prediction for the Newsroom: Which Articles Will Get the Most Comments?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carl</namePart>
<namePart type="family">Ambroselli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Risch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ralf</namePart>
<namePart type="family">Krestel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Loos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Srinivas</namePart>
<namePart type="family">Bangalore</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jennifer</namePart>
<namePart type="family">Chu-Carroll</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans - Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The overwhelming success of the Web and mobile technologies has enabled millions to share their opinions publicly at any time. But the same success also endangers this freedom of speech due to closing down of participatory sites misused by individuals or interest groups. We propose to support manual moderation by proactively drawing the attention of our moderators to article discussions that most likely need their intervention. To this end, we predict which articles will receive a high number of comments. In contrast to existing work, we enrich the article with metadata, extract semantic and linguistic features, and exploit annotated data from a foreign language corpus. Our logistic regression model improves F1-scores by over 80% in comparison to state-of-the-art approaches.</abstract>
<identifier type="citekey">ambroselli-etal-2018-prediction</identifier>
<identifier type="doi">10.18653/v1/N18-3024</identifier>
<location>
<url>https://aclanthology.org/N18-3024</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>193</start>
<end>199</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Prediction for the Newsroom: Which Articles Will Get the Most Comments?
%A Ambroselli, Carl
%A Risch, Julian
%A Krestel, Ralf
%A Loos, Andreas
%Y Bangalore, Srinivas
%Y Chu-Carroll, Jennifer
%Y Li, Yunyao
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans - Louisiana
%F ambroselli-etal-2018-prediction
%X The overwhelming success of the Web and mobile technologies has enabled millions to share their opinions publicly at any time. But the same success also endangers this freedom of speech due to closing down of participatory sites misused by individuals or interest groups. We propose to support manual moderation by proactively drawing the attention of our moderators to article discussions that most likely need their intervention. To this end, we predict which articles will receive a high number of comments. In contrast to existing work, we enrich the article with metadata, extract semantic and linguistic features, and exploit annotated data from a foreign language corpus. Our logistic regression model improves F1-scores by over 80% in comparison to state-of-the-art approaches.
%R 10.18653/v1/N18-3024
%U https://aclanthology.org/N18-3024
%U https://doi.org/10.18653/v1/N18-3024
%P 193-199
Markdown (Informal)
[Prediction for the Newsroom: Which Articles Will Get the Most Comments?](https://aclanthology.org/N18-3024) (Ambroselli et al., NAACL 2018)
ACL
- Carl Ambroselli, Julian Risch, Ralf Krestel, and Andreas Loos. 2018. Prediction for the Newsroom: Which Articles Will Get the Most Comments?. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers), pages 193–199, New Orleans - Louisiana. Association for Computational Linguistics.