@inproceedings{shimanaka-etal-2018-metric,
title = "Metric for Automatic Machine Translation Evaluation based on Universal Sentence Representations",
author = "Shimanaka, Hiroki and
Kajiwara, Tomoyuki and
Komachi, Mamoru",
editor = "Cordeiro, Silvio Ricardo and
Oraby, Shereen and
Pavalanathan, Umashanthi and
Rim, Kyeongmin",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Student Research Workshop",
month = jun,
year = "2018",
address = "New Orleans, Louisiana, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-4015",
doi = "10.18653/v1/N18-4015",
pages = "106--111",
abstract = "Sentence representations can capture a wide range of information that cannot be captured by local features based on character or word N-grams. This paper examines the usefulness of universal sentence representations for evaluating the quality of machine translation. Al-though it is difficult to train sentence representations using small-scale translation datasets with manual evaluation, sentence representations trained from large-scale data in other tasks can improve the automatic evaluation of machine translation. Experimental results of the WMT-2016 dataset show that the proposed method achieves state-of-the-art performance with sentence representation features only.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shimanaka-etal-2018-metric">
<titleInfo>
<title>Metric for Automatic Machine Translation Evaluation based on Universal Sentence Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hiroki</namePart>
<namePart type="family">Shimanaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomoyuki</namePart>
<namePart type="family">Kajiwara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mamoru</namePart>
<namePart type="family">Komachi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silvio</namePart>
<namePart type="given">Ricardo</namePart>
<namePart type="family">Cordeiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shereen</namePart>
<namePart type="family">Oraby</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Umashanthi</namePart>
<namePart type="family">Pavalanathan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyeongmin</namePart>
<namePart type="family">Rim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentence representations can capture a wide range of information that cannot be captured by local features based on character or word N-grams. This paper examines the usefulness of universal sentence representations for evaluating the quality of machine translation. Al-though it is difficult to train sentence representations using small-scale translation datasets with manual evaluation, sentence representations trained from large-scale data in other tasks can improve the automatic evaluation of machine translation. Experimental results of the WMT-2016 dataset show that the proposed method achieves state-of-the-art performance with sentence representation features only.</abstract>
<identifier type="citekey">shimanaka-etal-2018-metric</identifier>
<identifier type="doi">10.18653/v1/N18-4015</identifier>
<location>
<url>https://aclanthology.org/N18-4015</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>106</start>
<end>111</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Metric for Automatic Machine Translation Evaluation based on Universal Sentence Representations
%A Shimanaka, Hiroki
%A Kajiwara, Tomoyuki
%A Komachi, Mamoru
%Y Cordeiro, Silvio Ricardo
%Y Oraby, Shereen
%Y Pavalanathan, Umashanthi
%Y Rim, Kyeongmin
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana, USA
%F shimanaka-etal-2018-metric
%X Sentence representations can capture a wide range of information that cannot be captured by local features based on character or word N-grams. This paper examines the usefulness of universal sentence representations for evaluating the quality of machine translation. Al-though it is difficult to train sentence representations using small-scale translation datasets with manual evaluation, sentence representations trained from large-scale data in other tasks can improve the automatic evaluation of machine translation. Experimental results of the WMT-2016 dataset show that the proposed method achieves state-of-the-art performance with sentence representation features only.
%R 10.18653/v1/N18-4015
%U https://aclanthology.org/N18-4015
%U https://doi.org/10.18653/v1/N18-4015
%P 106-111
Markdown (Informal)
[Metric for Automatic Machine Translation Evaluation based on Universal Sentence Representations](https://aclanthology.org/N18-4015) (Shimanaka et al., NAACL 2018)
ACL