@inproceedings{larson-etal-2019-outlier,
title = "Outlier Detection for Improved Data Quality and Diversity in Dialog Systems",
author = "Larson, Stefan and
Mahendran, Anish and
Lee, Andrew and
Kummerfeld, Jonathan K. and
Hill, Parker and
Laurenzano, Michael A. and
Hauswald, Johann and
Tang, Lingjia and
Mars, Jason",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1051/",
doi = "10.18653/v1/N19-1051",
pages = "517--527",
abstract = "In a corpus of data, outliers are either errors: mistakes in the data that are counterproductive, or are unique: informative samples that improve model robustness. Identifying outliers can lead to better datasets by (1) removing noise in datasets and (2) guiding collection of additional data to fill gaps. However, the problem of detecting both outlier types has received relatively little attention in NLP, particularly for dialog systems. We introduce a simple and effective technique for detecting both erroneous and unique samples in a corpus of short texts using neural sentence embeddings combined with distance-based outlier detection. We also present a novel data collection pipeline built atop our detection technique to automatically and iteratively mine unique data samples while discarding erroneous samples. Experiments show that our outlier detection technique is effective at finding errors while our data collection pipeline yields highly diverse corpora that in turn produce more robust intent classification and slot-filling models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="larson-etal-2019-outlier">
<titleInfo>
<title>Outlier Detection for Improved Data Quality and Diversity in Dialog Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Larson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anish</namePart>
<namePart type="family">Mahendran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="given">K</namePart>
<namePart type="family">Kummerfeld</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parker</namePart>
<namePart type="family">Hill</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Laurenzano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johann</namePart>
<namePart type="family">Hauswald</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingjia</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Mars</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In a corpus of data, outliers are either errors: mistakes in the data that are counterproductive, or are unique: informative samples that improve model robustness. Identifying outliers can lead to better datasets by (1) removing noise in datasets and (2) guiding collection of additional data to fill gaps. However, the problem of detecting both outlier types has received relatively little attention in NLP, particularly for dialog systems. We introduce a simple and effective technique for detecting both erroneous and unique samples in a corpus of short texts using neural sentence embeddings combined with distance-based outlier detection. We also present a novel data collection pipeline built atop our detection technique to automatically and iteratively mine unique data samples while discarding erroneous samples. Experiments show that our outlier detection technique is effective at finding errors while our data collection pipeline yields highly diverse corpora that in turn produce more robust intent classification and slot-filling models.</abstract>
<identifier type="citekey">larson-etal-2019-outlier</identifier>
<identifier type="doi">10.18653/v1/N19-1051</identifier>
<location>
<url>https://aclanthology.org/N19-1051/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>517</start>
<end>527</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Outlier Detection for Improved Data Quality and Diversity in Dialog Systems
%A Larson, Stefan
%A Mahendran, Anish
%A Lee, Andrew
%A Kummerfeld, Jonathan K.
%A Hill, Parker
%A Laurenzano, Michael A.
%A Hauswald, Johann
%A Tang, Lingjia
%A Mars, Jason
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F larson-etal-2019-outlier
%X In a corpus of data, outliers are either errors: mistakes in the data that are counterproductive, or are unique: informative samples that improve model robustness. Identifying outliers can lead to better datasets by (1) removing noise in datasets and (2) guiding collection of additional data to fill gaps. However, the problem of detecting both outlier types has received relatively little attention in NLP, particularly for dialog systems. We introduce a simple and effective technique for detecting both erroneous and unique samples in a corpus of short texts using neural sentence embeddings combined with distance-based outlier detection. We also present a novel data collection pipeline built atop our detection technique to automatically and iteratively mine unique data samples while discarding erroneous samples. Experiments show that our outlier detection technique is effective at finding errors while our data collection pipeline yields highly diverse corpora that in turn produce more robust intent classification and slot-filling models.
%R 10.18653/v1/N19-1051
%U https://aclanthology.org/N19-1051/
%U https://doi.org/10.18653/v1/N19-1051
%P 517-527
Markdown (Informal)
[Outlier Detection for Improved Data Quality and Diversity in Dialog Systems](https://aclanthology.org/N19-1051/) (Larson et al., NAACL 2019)
ACL
- Stefan Larson, Anish Mahendran, Andrew Lee, Jonathan K. Kummerfeld, Parker Hill, Michael A. Laurenzano, Johann Hauswald, Lingjia Tang, and Jason Mars. 2019. Outlier Detection for Improved Data Quality and Diversity in Dialog Systems. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 517–527, Minneapolis, Minnesota. Association for Computational Linguistics.