@inproceedings{falke-gurevych-2019-fast,
title = "Fast Concept Mention Grouping for Concept Map-based Multi-Document Summarization",
author = "Falke, Tobias and
Gurevych, Iryna",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1074/",
doi = "10.18653/v1/N19-1074",
pages = "695--700",
abstract = "Concept map-based multi-document summarization has recently been proposed as a variant of the traditional summarization task with graph-structured summaries. As shown by previous work, the grouping of coreferent concept mentions across documents is a crucial subtask of it. However, while the current state-of-the-art method suggested a new grouping method that was shown to improve the summary quality, its use of pairwise comparisons leads to polynomial runtime complexity that prohibits the application to large document collections. In this paper, we propose two alternative grouping techniques based on locality sensitive hashing, approximate nearest neighbor search and a fast clustering algorithm. They exhibit linear and log-linear runtime complexity, making them much more scalable. We report experimental results that confirm the improved runtime behavior while also showing that the quality of the summary concept maps remains comparable."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="falke-gurevych-2019-fast">
<titleInfo>
<title>Fast Concept Mention Grouping for Concept Map-based Multi-Document Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tobias</namePart>
<namePart type="family">Falke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Concept map-based multi-document summarization has recently been proposed as a variant of the traditional summarization task with graph-structured summaries. As shown by previous work, the grouping of coreferent concept mentions across documents is a crucial subtask of it. However, while the current state-of-the-art method suggested a new grouping method that was shown to improve the summary quality, its use of pairwise comparisons leads to polynomial runtime complexity that prohibits the application to large document collections. In this paper, we propose two alternative grouping techniques based on locality sensitive hashing, approximate nearest neighbor search and a fast clustering algorithm. They exhibit linear and log-linear runtime complexity, making them much more scalable. We report experimental results that confirm the improved runtime behavior while also showing that the quality of the summary concept maps remains comparable.</abstract>
<identifier type="citekey">falke-gurevych-2019-fast</identifier>
<identifier type="doi">10.18653/v1/N19-1074</identifier>
<location>
<url>https://aclanthology.org/N19-1074/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>695</start>
<end>700</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fast Concept Mention Grouping for Concept Map-based Multi-Document Summarization
%A Falke, Tobias
%A Gurevych, Iryna
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F falke-gurevych-2019-fast
%X Concept map-based multi-document summarization has recently been proposed as a variant of the traditional summarization task with graph-structured summaries. As shown by previous work, the grouping of coreferent concept mentions across documents is a crucial subtask of it. However, while the current state-of-the-art method suggested a new grouping method that was shown to improve the summary quality, its use of pairwise comparisons leads to polynomial runtime complexity that prohibits the application to large document collections. In this paper, we propose two alternative grouping techniques based on locality sensitive hashing, approximate nearest neighbor search and a fast clustering algorithm. They exhibit linear and log-linear runtime complexity, making them much more scalable. We report experimental results that confirm the improved runtime behavior while also showing that the quality of the summary concept maps remains comparable.
%R 10.18653/v1/N19-1074
%U https://aclanthology.org/N19-1074/
%U https://doi.org/10.18653/v1/N19-1074
%P 695-700
Markdown (Informal)
[Fast Concept Mention Grouping for Concept Map-based Multi-Document Summarization](https://aclanthology.org/N19-1074/) (Falke & Gurevych, NAACL 2019)
ACL