@inproceedings{eger-etal-2019-text,
title = "Text Processing Like Humans Do: Visually Attacking and Shielding {NLP} Systems",
author = {Eger, Steffen and
{\c{S}}ahin, G{\"o}zde G{\"u}l and
R{\"u}ckl{\'e}, Andreas and
Lee, Ji-Ung and
Schulz, Claudia and
Mesgar, Mohsen and
Swarnkar, Krishnkant and
Simpson, Edwin and
Gurevych, Iryna},
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1165/",
doi = "10.18653/v1/N19-1165",
pages = "1634--1647",
abstract = "Visual modifications to text are often used to obfuscate offensive comments in social media (e.g., {\textquotedblleft}!d10t{\textquotedblright}) or as a writing style ({\textquotedblleft}1337{\textquotedblright} in {\textquotedblleft}leet speak{\textquotedblright}), among other scenarios. We consider this as a new type of adversarial attack in NLP, a setting to which humans are very robust, as our experiments with both simple and more difficult visual perturbations demonstrate. We investigate the impact of visual adversarial attacks on current NLP systems on character-, word-, and sentence-level tasks, showing that both neural and non-neural models are, in contrast to humans, extremely sensitive to such attacks, suffering performance decreases of up to 82{\%}. We then explore three shielding methods{---}visual character embeddings, adversarial training, and rule-based recovery{---}which substantially improve the robustness of the models. However, the shielding methods still fall behind performances achieved in non-attack scenarios, which demonstrates the difficulty of dealing with visual attacks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="eger-etal-2019-text">
<titleInfo>
<title>Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steffen</namePart>
<namePart type="family">Eger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gözde</namePart>
<namePart type="given">Gül</namePart>
<namePart type="family">Şahin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Rücklé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ji-Ung</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Schulz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohsen</namePart>
<namePart type="family">Mesgar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Krishnkant</namePart>
<namePart type="family">Swarnkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edwin</namePart>
<namePart type="family">Simpson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Visual modifications to text are often used to obfuscate offensive comments in social media (e.g., “!d10t”) or as a writing style (“1337” in “leet speak”), among other scenarios. We consider this as a new type of adversarial attack in NLP, a setting to which humans are very robust, as our experiments with both simple and more difficult visual perturbations demonstrate. We investigate the impact of visual adversarial attacks on current NLP systems on character-, word-, and sentence-level tasks, showing that both neural and non-neural models are, in contrast to humans, extremely sensitive to such attacks, suffering performance decreases of up to 82%. We then explore three shielding methods—visual character embeddings, adversarial training, and rule-based recovery—which substantially improve the robustness of the models. However, the shielding methods still fall behind performances achieved in non-attack scenarios, which demonstrates the difficulty of dealing with visual attacks.</abstract>
<identifier type="citekey">eger-etal-2019-text</identifier>
<identifier type="doi">10.18653/v1/N19-1165</identifier>
<location>
<url>https://aclanthology.org/N19-1165/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1634</start>
<end>1647</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems
%A Eger, Steffen
%A Şahin, Gözde Gül
%A Rücklé, Andreas
%A Lee, Ji-Ung
%A Schulz, Claudia
%A Mesgar, Mohsen
%A Swarnkar, Krishnkant
%A Simpson, Edwin
%A Gurevych, Iryna
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F eger-etal-2019-text
%X Visual modifications to text are often used to obfuscate offensive comments in social media (e.g., “!d10t”) or as a writing style (“1337” in “leet speak”), among other scenarios. We consider this as a new type of adversarial attack in NLP, a setting to which humans are very robust, as our experiments with both simple and more difficult visual perturbations demonstrate. We investigate the impact of visual adversarial attacks on current NLP systems on character-, word-, and sentence-level tasks, showing that both neural and non-neural models are, in contrast to humans, extremely sensitive to such attacks, suffering performance decreases of up to 82%. We then explore three shielding methods—visual character embeddings, adversarial training, and rule-based recovery—which substantially improve the robustness of the models. However, the shielding methods still fall behind performances achieved in non-attack scenarios, which demonstrates the difficulty of dealing with visual attacks.
%R 10.18653/v1/N19-1165
%U https://aclanthology.org/N19-1165/
%U https://doi.org/10.18653/v1/N19-1165
%P 1634-1647
Markdown (Informal)
[Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems](https://aclanthology.org/N19-1165/) (Eger et al., NAACL 2019)
ACL
- Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-Ung Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant Swarnkar, Edwin Simpson, and Iryna Gurevych. 2019. Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1634–1647, Minneapolis, Minnesota. Association for Computational Linguistics.