@inproceedings{zhang-etal-2019-curriculum,
title = "Curriculum Learning for Domain Adaptation in Neural Machine Translation",
author = "Zhang, Xuan and
Shapiro, Pamela and
Kumar, Gaurav and
McNamee, Paul and
Carpuat, Marine and
Duh, Kevin",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1189/",
doi = "10.18653/v1/N19-1189",
pages = "1903--1915",
abstract = "We introduce a curriculum learning approach to adapt generic neural machine translation models to a specific domain. Samples are grouped by their similarities to the domain of interest and each group is fed to the training algorithm with a particular schedule. This approach is simple to implement on top of any neural framework or architecture, and consistently outperforms both unadapted and adapted baselines in experiments with two distinct domains and two language pairs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2019-curriculum">
<titleInfo>
<title>Curriculum Learning for Domain Adaptation in Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xuan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pamela</namePart>
<namePart type="family">Shapiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaurav</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">McNamee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a curriculum learning approach to adapt generic neural machine translation models to a specific domain. Samples are grouped by their similarities to the domain of interest and each group is fed to the training algorithm with a particular schedule. This approach is simple to implement on top of any neural framework or architecture, and consistently outperforms both unadapted and adapted baselines in experiments with two distinct domains and two language pairs.</abstract>
<identifier type="citekey">zhang-etal-2019-curriculum</identifier>
<identifier type="doi">10.18653/v1/N19-1189</identifier>
<location>
<url>https://aclanthology.org/N19-1189/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1903</start>
<end>1915</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Curriculum Learning for Domain Adaptation in Neural Machine Translation
%A Zhang, Xuan
%A Shapiro, Pamela
%A Kumar, Gaurav
%A McNamee, Paul
%A Carpuat, Marine
%A Duh, Kevin
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F zhang-etal-2019-curriculum
%X We introduce a curriculum learning approach to adapt generic neural machine translation models to a specific domain. Samples are grouped by their similarities to the domain of interest and each group is fed to the training algorithm with a particular schedule. This approach is simple to implement on top of any neural framework or architecture, and consistently outperforms both unadapted and adapted baselines in experiments with two distinct domains and two language pairs.
%R 10.18653/v1/N19-1189
%U https://aclanthology.org/N19-1189/
%U https://doi.org/10.18653/v1/N19-1189
%P 1903-1915
Markdown (Informal)
[Curriculum Learning for Domain Adaptation in Neural Machine Translation](https://aclanthology.org/N19-1189/) (Zhang et al., NAACL 2019)
ACL
- Xuan Zhang, Pamela Shapiro, Gaurav Kumar, Paul McNamee, Marine Carpuat, and Kevin Duh. 2019. Curriculum Learning for Domain Adaptation in Neural Machine Translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1903–1915, Minneapolis, Minnesota. Association for Computational Linguistics.