@inproceedings{de-cao-etal-2019-question,
title = "Question Answering by Reasoning Across Documents with Graph Convolutional Networks",
author = "De Cao, Nicola and
Aziz, Wilker and
Titov, Ivan",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1240/",
doi = "10.18653/v1/N19-1240",
pages = "2306--2317",
abstract = "Most research in reading comprehension has focused on answering questions based on individual documents or even single paragraphs. We introduce a neural model which integrates and reasons relying on information spread within documents and across multiple documents. We frame it as an inference problem on a graph. Mentions of entities are nodes of this graph while edges encode relations between different mentions (e.g., within- and cross-document co-reference). Graph convolutional networks (GCNs) are applied to these graphs and trained to perform multi-step reasoning. Our Entity-GCN method is scalable and compact, and it achieves state-of-the-art results on a multi-document question answering dataset, WikiHop (Welbl et al., 2018)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="de-cao-etal-2019-question">
<titleInfo>
<title>Question Answering by Reasoning Across Documents with Graph Convolutional Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicola</namePart>
<namePart type="family">De Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wilker</namePart>
<namePart type="family">Aziz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Titov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most research in reading comprehension has focused on answering questions based on individual documents or even single paragraphs. We introduce a neural model which integrates and reasons relying on information spread within documents and across multiple documents. We frame it as an inference problem on a graph. Mentions of entities are nodes of this graph while edges encode relations between different mentions (e.g., within- and cross-document co-reference). Graph convolutional networks (GCNs) are applied to these graphs and trained to perform multi-step reasoning. Our Entity-GCN method is scalable and compact, and it achieves state-of-the-art results on a multi-document question answering dataset, WikiHop (Welbl et al., 2018).</abstract>
<identifier type="citekey">de-cao-etal-2019-question</identifier>
<identifier type="doi">10.18653/v1/N19-1240</identifier>
<location>
<url>https://aclanthology.org/N19-1240/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>2306</start>
<end>2317</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Question Answering by Reasoning Across Documents with Graph Convolutional Networks
%A De Cao, Nicola
%A Aziz, Wilker
%A Titov, Ivan
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F de-cao-etal-2019-question
%X Most research in reading comprehension has focused on answering questions based on individual documents or even single paragraphs. We introduce a neural model which integrates and reasons relying on information spread within documents and across multiple documents. We frame it as an inference problem on a graph. Mentions of entities are nodes of this graph while edges encode relations between different mentions (e.g., within- and cross-document co-reference). Graph convolutional networks (GCNs) are applied to these graphs and trained to perform multi-step reasoning. Our Entity-GCN method is scalable and compact, and it achieves state-of-the-art results on a multi-document question answering dataset, WikiHop (Welbl et al., 2018).
%R 10.18653/v1/N19-1240
%U https://aclanthology.org/N19-1240/
%U https://doi.org/10.18653/v1/N19-1240
%P 2306-2317
Markdown (Informal)
[Question Answering by Reasoning Across Documents with Graph Convolutional Networks](https://aclanthology.org/N19-1240/) (De Cao et al., NAACL 2019)
ACL