@inproceedings{fu-etal-2019-fact,
title = "Fact Discovery from Knowledge Base via Facet Decomposition",
author = "Fu, Zihao and
Lin, Yankai and
Liu, Zhiyuan and
Lam, Wai",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1297/",
doi = "10.18653/v1/N19-1297",
pages = "2892--2901",
abstract = "During the past few decades, knowledge bases (KBs) have experienced rapid growth. Nevertheless, most KBs still suffer from serious incompletion. Researchers proposed many tasks such as knowledge base completion and relation prediction to help build the representation of KBs. However, there are some issues unsettled towards enriching the KBs. Knowledge base completion and relation prediction assume that we know two elements of the fact triples and we are going to predict the missing one. This assumption is too restricted in practice and prevents it from discovering new facts directly. To address this issue, we propose a new task, namely, fact discovery from knowledge base. This task only requires that we know the head entity and the goal is to discover facts associated with the head entity. To tackle this new problem, we propose a novel framework that decomposes the discovery problem into several facet discovery components. We also propose a novel auto-encoder based facet component to estimate some facets of the fact. Besides, we propose a feedback learning component to share the information between each facet. We evaluate our framework using a benchmark dataset and the experimental results show that our framework achieves promising results. We also conduct an extensive analysis of our framework in discovering different kinds of facts. The source code of this paper can be obtained from \url{https://github.com/thunlp/FFD}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fu-etal-2019-fact">
<titleInfo>
<title>Fact Discovery from Knowledge Base via Facet Decomposition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zihao</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yankai</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wai</namePart>
<namePart type="family">Lam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>During the past few decades, knowledge bases (KBs) have experienced rapid growth. Nevertheless, most KBs still suffer from serious incompletion. Researchers proposed many tasks such as knowledge base completion and relation prediction to help build the representation of KBs. However, there are some issues unsettled towards enriching the KBs. Knowledge base completion and relation prediction assume that we know two elements of the fact triples and we are going to predict the missing one. This assumption is too restricted in practice and prevents it from discovering new facts directly. To address this issue, we propose a new task, namely, fact discovery from knowledge base. This task only requires that we know the head entity and the goal is to discover facts associated with the head entity. To tackle this new problem, we propose a novel framework that decomposes the discovery problem into several facet discovery components. We also propose a novel auto-encoder based facet component to estimate some facets of the fact. Besides, we propose a feedback learning component to share the information between each facet. We evaluate our framework using a benchmark dataset and the experimental results show that our framework achieves promising results. We also conduct an extensive analysis of our framework in discovering different kinds of facts. The source code of this paper can be obtained from https://github.com/thunlp/FFD.</abstract>
<identifier type="citekey">fu-etal-2019-fact</identifier>
<identifier type="doi">10.18653/v1/N19-1297</identifier>
<location>
<url>https://aclanthology.org/N19-1297/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>2892</start>
<end>2901</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fact Discovery from Knowledge Base via Facet Decomposition
%A Fu, Zihao
%A Lin, Yankai
%A Liu, Zhiyuan
%A Lam, Wai
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F fu-etal-2019-fact
%X During the past few decades, knowledge bases (KBs) have experienced rapid growth. Nevertheless, most KBs still suffer from serious incompletion. Researchers proposed many tasks such as knowledge base completion and relation prediction to help build the representation of KBs. However, there are some issues unsettled towards enriching the KBs. Knowledge base completion and relation prediction assume that we know two elements of the fact triples and we are going to predict the missing one. This assumption is too restricted in practice and prevents it from discovering new facts directly. To address this issue, we propose a new task, namely, fact discovery from knowledge base. This task only requires that we know the head entity and the goal is to discover facts associated with the head entity. To tackle this new problem, we propose a novel framework that decomposes the discovery problem into several facet discovery components. We also propose a novel auto-encoder based facet component to estimate some facets of the fact. Besides, we propose a feedback learning component to share the information between each facet. We evaluate our framework using a benchmark dataset and the experimental results show that our framework achieves promising results. We also conduct an extensive analysis of our framework in discovering different kinds of facts. The source code of this paper can be obtained from https://github.com/thunlp/FFD.
%R 10.18653/v1/N19-1297
%U https://aclanthology.org/N19-1297/
%U https://doi.org/10.18653/v1/N19-1297
%P 2892-2901
Markdown (Informal)
[Fact Discovery from Knowledge Base via Facet Decomposition](https://aclanthology.org/N19-1297/) (Fu et al., NAACL 2019)
ACL
- Zihao Fu, Yankai Lin, Zhiyuan Liu, and Wai Lam. 2019. Fact Discovery from Knowledge Base via Facet Decomposition. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2892–2901, Minneapolis, Minnesota. Association for Computational Linguistics.