@inproceedings{saphra-lopez-2019-understanding,
title = "Understanding Learning Dynamics Of Language Models with {SVCCA}",
author = "Saphra, Naomi and
Lopez, Adam",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1329/",
doi = "10.18653/v1/N19-1329",
pages = "3257--3267",
abstract = "Research has shown that neural models implicitly encode linguistic features, but there has been no research showing \textit{how} these encodings arise as the models are trained. We present the first study on the learning dynamics of neural language models, using a simple and flexible analysis method called Singular Vector Canonical Correlation Analysis (SVCCA), which enables us to compare learned representations across time and across models, without the need to evaluate directly on annotated data. We probe the evolution of syntactic, semantic, and topic representations, finding, for example, that part-of-speech is learned earlier than topic; that recurrent layers become more similar to those of a tagger during training; and embedding layers less similar. Our results and methods could inform better learning algorithms for NLP models, possibly to incorporate linguistic information more effectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="saphra-lopez-2019-understanding">
<titleInfo>
<title>Understanding Learning Dynamics Of Language Models with SVCCA</title>
</titleInfo>
<name type="personal">
<namePart type="given">Naomi</namePart>
<namePart type="family">Saphra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Lopez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Research has shown that neural models implicitly encode linguistic features, but there has been no research showing how these encodings arise as the models are trained. We present the first study on the learning dynamics of neural language models, using a simple and flexible analysis method called Singular Vector Canonical Correlation Analysis (SVCCA), which enables us to compare learned representations across time and across models, without the need to evaluate directly on annotated data. We probe the evolution of syntactic, semantic, and topic representations, finding, for example, that part-of-speech is learned earlier than topic; that recurrent layers become more similar to those of a tagger during training; and embedding layers less similar. Our results and methods could inform better learning algorithms for NLP models, possibly to incorporate linguistic information more effectively.</abstract>
<identifier type="citekey">saphra-lopez-2019-understanding</identifier>
<identifier type="doi">10.18653/v1/N19-1329</identifier>
<location>
<url>https://aclanthology.org/N19-1329/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>3257</start>
<end>3267</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Understanding Learning Dynamics Of Language Models with SVCCA
%A Saphra, Naomi
%A Lopez, Adam
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F saphra-lopez-2019-understanding
%X Research has shown that neural models implicitly encode linguistic features, but there has been no research showing how these encodings arise as the models are trained. We present the first study on the learning dynamics of neural language models, using a simple and flexible analysis method called Singular Vector Canonical Correlation Analysis (SVCCA), which enables us to compare learned representations across time and across models, without the need to evaluate directly on annotated data. We probe the evolution of syntactic, semantic, and topic representations, finding, for example, that part-of-speech is learned earlier than topic; that recurrent layers become more similar to those of a tagger during training; and embedding layers less similar. Our results and methods could inform better learning algorithms for NLP models, possibly to incorporate linguistic information more effectively.
%R 10.18653/v1/N19-1329
%U https://aclanthology.org/N19-1329/
%U https://doi.org/10.18653/v1/N19-1329
%P 3257-3267
Markdown (Informal)
[Understanding Learning Dynamics Of Language Models with SVCCA](https://aclanthology.org/N19-1329/) (Saphra & Lopez, NAACL 2019)
ACL
- Naomi Saphra and Adam Lopez. 2019. Understanding Learning Dynamics Of Language Models with SVCCA. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3257–3267, Minneapolis, Minnesota. Association for Computational Linguistics.