@inproceedings{wilcox-etal-2019-structural,
title = "Structural Supervision Improves Learning of Non-Local Grammatical Dependencies",
author = "Wilcox, Ethan and
Qian, Peng and
Futrell, Richard and
Ballesteros, Miguel and
Levy, Roger",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1334/",
doi = "10.18653/v1/N19-1334",
pages = "3302--3312",
abstract = "State-of-the-art LSTM language models trained on large corpora learn sequential contingencies in impressive detail, and have been shown to acquire a number of non-local grammatical dependencies with some success. Here we investigate whether supervision with hierarchical structure enhances learning of a range of grammatical dependencies, a question that has previously been addressed only for subject-verb agreement. Using controlled experimental methods from psycholinguistics, we compare the performance of word-based LSTM models versus Recurrent Neural Network Grammars (RNNGs) (Dyer et al. 2016) which represent hierarchical syntactic structure and use neural control to deploy it in left-to-right processing, on two classes of non-local grammatical dependencies in English{---}Negative Polarity licensing and Filler-Gap Dependencies{---}tested in a range of configurations. Using the same training data for both models, we find that the RNNG outperforms the LSTM on both types of grammatical dependencies and even learns many of the Island Constraints on the filler-gap dependency. Structural supervision thus provides data efficiency advantages over purely string-based training of neural language models in acquiring human-like generalizations about non-local grammatical dependencies."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wilcox-etal-2019-structural">
<titleInfo>
<title>Structural Supervision Improves Learning of Non-Local Grammatical Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ethan</namePart>
<namePart type="family">Wilcox</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peng</namePart>
<namePart type="family">Qian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Futrell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miguel</namePart>
<namePart type="family">Ballesteros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roger</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>State-of-the-art LSTM language models trained on large corpora learn sequential contingencies in impressive detail, and have been shown to acquire a number of non-local grammatical dependencies with some success. Here we investigate whether supervision with hierarchical structure enhances learning of a range of grammatical dependencies, a question that has previously been addressed only for subject-verb agreement. Using controlled experimental methods from psycholinguistics, we compare the performance of word-based LSTM models versus Recurrent Neural Network Grammars (RNNGs) (Dyer et al. 2016) which represent hierarchical syntactic structure and use neural control to deploy it in left-to-right processing, on two classes of non-local grammatical dependencies in English—Negative Polarity licensing and Filler-Gap Dependencies—tested in a range of configurations. Using the same training data for both models, we find that the RNNG outperforms the LSTM on both types of grammatical dependencies and even learns many of the Island Constraints on the filler-gap dependency. Structural supervision thus provides data efficiency advantages over purely string-based training of neural language models in acquiring human-like generalizations about non-local grammatical dependencies.</abstract>
<identifier type="citekey">wilcox-etal-2019-structural</identifier>
<identifier type="doi">10.18653/v1/N19-1334</identifier>
<location>
<url>https://aclanthology.org/N19-1334/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>3302</start>
<end>3312</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Structural Supervision Improves Learning of Non-Local Grammatical Dependencies
%A Wilcox, Ethan
%A Qian, Peng
%A Futrell, Richard
%A Ballesteros, Miguel
%A Levy, Roger
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F wilcox-etal-2019-structural
%X State-of-the-art LSTM language models trained on large corpora learn sequential contingencies in impressive detail, and have been shown to acquire a number of non-local grammatical dependencies with some success. Here we investigate whether supervision with hierarchical structure enhances learning of a range of grammatical dependencies, a question that has previously been addressed only for subject-verb agreement. Using controlled experimental methods from psycholinguistics, we compare the performance of word-based LSTM models versus Recurrent Neural Network Grammars (RNNGs) (Dyer et al. 2016) which represent hierarchical syntactic structure and use neural control to deploy it in left-to-right processing, on two classes of non-local grammatical dependencies in English—Negative Polarity licensing and Filler-Gap Dependencies—tested in a range of configurations. Using the same training data for both models, we find that the RNNG outperforms the LSTM on both types of grammatical dependencies and even learns many of the Island Constraints on the filler-gap dependency. Structural supervision thus provides data efficiency advantages over purely string-based training of neural language models in acquiring human-like generalizations about non-local grammatical dependencies.
%R 10.18653/v1/N19-1334
%U https://aclanthology.org/N19-1334/
%U https://doi.org/10.18653/v1/N19-1334
%P 3302-3312
Markdown (Informal)
[Structural Supervision Improves Learning of Non-Local Grammatical Dependencies](https://aclanthology.org/N19-1334/) (Wilcox et al., NAACL 2019)
ACL
- Ethan Wilcox, Peng Qian, Richard Futrell, Miguel Ballesteros, and Roger Levy. 2019. Structural Supervision Improves Learning of Non-Local Grammatical Dependencies. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3302–3312, Minneapolis, Minnesota. Association for Computational Linguistics.