@inproceedings{kumar-cheung-2019-understanding,
title = "{U}nderstanding the {B}ehaviour of {N}eural {A}bstractive {S}ummarizers using {C}ontrastive {E}xamples",
author = "Kumar, Krtin and
Cheung, Jackie Chi Kit",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1396/",
doi = "10.18653/v1/N19-1396",
pages = "3949--3954",
abstract = "Neural abstractive summarizers generate summary texts using a language model conditioned on the input source text, and have recently achieved high ROUGE scores on benchmark summarization datasets. We investigate how they achieve this performance with respect to human-written gold-standard abstracts, and whether the systems are able to understand deeper syntactic and semantic structures. We generate a set of contrastive summaries which are perturbed, deficient versions of human-written summaries, and test whether existing neural summarizers score them more highly than the human-written summaries. We analyze their performance on different datasets and find that these systems fail to understand the source text, in a majority of the cases."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-cheung-2019-understanding">
<titleInfo>
<title>Understanding the Behaviour of Neural Abstractive Summarizers using Contrastive Examples</title>
</titleInfo>
<name type="personal">
<namePart type="given">Krtin</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jackie</namePart>
<namePart type="given">Chi</namePart>
<namePart type="given">Kit</namePart>
<namePart type="family">Cheung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural abstractive summarizers generate summary texts using a language model conditioned on the input source text, and have recently achieved high ROUGE scores on benchmark summarization datasets. We investigate how they achieve this performance with respect to human-written gold-standard abstracts, and whether the systems are able to understand deeper syntactic and semantic structures. We generate a set of contrastive summaries which are perturbed, deficient versions of human-written summaries, and test whether existing neural summarizers score them more highly than the human-written summaries. We analyze their performance on different datasets and find that these systems fail to understand the source text, in a majority of the cases.</abstract>
<identifier type="citekey">kumar-cheung-2019-understanding</identifier>
<identifier type="doi">10.18653/v1/N19-1396</identifier>
<location>
<url>https://aclanthology.org/N19-1396/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>3949</start>
<end>3954</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Understanding the Behaviour of Neural Abstractive Summarizers using Contrastive Examples
%A Kumar, Krtin
%A Cheung, Jackie Chi Kit
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F kumar-cheung-2019-understanding
%X Neural abstractive summarizers generate summary texts using a language model conditioned on the input source text, and have recently achieved high ROUGE scores on benchmark summarization datasets. We investigate how they achieve this performance with respect to human-written gold-standard abstracts, and whether the systems are able to understand deeper syntactic and semantic structures. We generate a set of contrastive summaries which are perturbed, deficient versions of human-written summaries, and test whether existing neural summarizers score them more highly than the human-written summaries. We analyze their performance on different datasets and find that these systems fail to understand the source text, in a majority of the cases.
%R 10.18653/v1/N19-1396
%U https://aclanthology.org/N19-1396/
%U https://doi.org/10.18653/v1/N19-1396
%P 3949-3954
Markdown (Informal)
[Understanding the Behaviour of Neural Abstractive Summarizers using Contrastive Examples](https://aclanthology.org/N19-1396/) (Kumar & Cheung, NAACL 2019)
ACL