@inproceedings{hewitt-manning-2019-structural,
title = "{A} Structural Probe for Finding Syntax in Word Representations",
author = "Hewitt, John and
Manning, Christopher D.",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1419/",
doi = "10.18653/v1/N19-1419",
pages = "4129--4138",
abstract = "Recent work has improved our ability to detect linguistic knowledge in word representations. However, current methods for detecting syntactic knowledge do not test whether syntax trees are represented in their entirety. In this work, we propose a structural probe, which evaluates whether syntax trees are embedded in a linear transformation of a neural network`s word representation space. The probe identifies a linear transformation under which squared L2 distance encodes the distance between words in the parse tree, and one in which squared L2 norm encodes depth in the parse tree. Using our probe, we show that such transformations exist for both ELMo and BERT but not in baselines, providing evidence that entire syntax trees are embedded implicitly in deep models' vector geometry."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hewitt-manning-2019-structural">
<titleInfo>
<title>A Structural Probe for Finding Syntax in Word Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Hewitt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Manning</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent work has improved our ability to detect linguistic knowledge in word representations. However, current methods for detecting syntactic knowledge do not test whether syntax trees are represented in their entirety. In this work, we propose a structural probe, which evaluates whether syntax trees are embedded in a linear transformation of a neural network‘s word representation space. The probe identifies a linear transformation under which squared L2 distance encodes the distance between words in the parse tree, and one in which squared L2 norm encodes depth in the parse tree. Using our probe, we show that such transformations exist for both ELMo and BERT but not in baselines, providing evidence that entire syntax trees are embedded implicitly in deep models’ vector geometry.</abstract>
<identifier type="citekey">hewitt-manning-2019-structural</identifier>
<identifier type="doi">10.18653/v1/N19-1419</identifier>
<location>
<url>https://aclanthology.org/N19-1419/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>4129</start>
<end>4138</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Structural Probe for Finding Syntax in Word Representations
%A Hewitt, John
%A Manning, Christopher D.
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F hewitt-manning-2019-structural
%X Recent work has improved our ability to detect linguistic knowledge in word representations. However, current methods for detecting syntactic knowledge do not test whether syntax trees are represented in their entirety. In this work, we propose a structural probe, which evaluates whether syntax trees are embedded in a linear transformation of a neural network‘s word representation space. The probe identifies a linear transformation under which squared L2 distance encodes the distance between words in the parse tree, and one in which squared L2 norm encodes depth in the parse tree. Using our probe, we show that such transformations exist for both ELMo and BERT but not in baselines, providing evidence that entire syntax trees are embedded implicitly in deep models’ vector geometry.
%R 10.18653/v1/N19-1419
%U https://aclanthology.org/N19-1419/
%U https://doi.org/10.18653/v1/N19-1419
%P 4129-4138
Markdown (Informal)
[A Structural Probe for Finding Syntax in Word Representations](https://aclanthology.org/N19-1419/) (Hewitt & Manning, NAACL 2019)
ACL
- John Hewitt and Christopher D. Manning. 2019. A Structural Probe for Finding Syntax in Word Representations. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4129–4138, Minneapolis, Minnesota. Association for Computational Linguistics.